已知f(x)=sin(π-x)sin(π/2-x)+cos²x
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 17:16:19
已知f(x)=sin(π-x)sin(π/2-x)+cos²x
当-π/8≤x≤3π/8,求f(x)的单调区间,
当-π/8≤x≤3π/8,求f(x)的单调区间,
f(x)=sin(π-x)sin[(π/2)-x]+cos²x
=sinxcosx+cos²x
=(1/2)sin2x+[(cos2x+1)/2]
=(1/2)(sin2x+cos2x)+(1/2)
=(1/2)*(√2)*sin[2x+(π/4)]+(1/2)
=(√2/2)sin[2x+(π/4)]+(1/2)
当2x+(π/4)∈[2kπ-(π/2),2kπ+(π/2)]时,f(x)单调递增
即,x∈[kπ-(3π/8),kπ+(π/8)]
当2x+(π/4)∈[2kπ+(π/2),2kπ+(3π/2)]时,f(x)单调递增
即,x∈[kπ+(π/8),kπ+(5π/8)]
而,x∈[-3π/8,3π/8]
所以:
x∈[-π/8,π/8]时,f(x)单调递增;
x∈[π/8,3π/8]时,f(x)单调递减.
=sinxcosx+cos²x
=(1/2)sin2x+[(cos2x+1)/2]
=(1/2)(sin2x+cos2x)+(1/2)
=(1/2)*(√2)*sin[2x+(π/4)]+(1/2)
=(√2/2)sin[2x+(π/4)]+(1/2)
当2x+(π/4)∈[2kπ-(π/2),2kπ+(π/2)]时,f(x)单调递增
即,x∈[kπ-(3π/8),kπ+(π/8)]
当2x+(π/4)∈[2kπ+(π/2),2kπ+(3π/2)]时,f(x)单调递增
即,x∈[kπ+(π/8),kπ+(5π/8)]
而,x∈[-3π/8,3π/8]
所以:
x∈[-π/8,π/8]时,f(x)单调递增;
x∈[π/8,3π/8]时,f(x)单调递减.
已知函数f(x)=cos(2x-π\3)+sin²x-cos²x
已知函数f(x)=cos(2x-π/3)+sin^2 x-cos^2 x
已知函数f(x)=sin(2x+π/6)+sin(2x+π/6)+2cos²x
已知函数f(x)=sin²ωx+根号3sinωx乘sin(ωx+π/2)+2cos²ωx,x∈R,(
已知函数f(x)= [sin(2π-x)sin(π+x)cos(-x-π)] /[2cos(π-x)sin(3π-x)]
已知f(x)=cos^2x+sinxcosx g(x)=2sin(x+π/4)sin(x-π/4)
已知函数f(x)=sin²(π/4+x)+cos²x+1/2求最值
已知函数f(x)=2sin(x/4)cos(x/4)-2√3sin²(x/4)+√3,且g(x)=f(x+π/
已知函数f(x)=cos(-x/2)+sin(π-x/2),x∈R
已知函数f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)
已知函数f(x)=sin(2x+π/3)+sin(2x-π/3)+2cos^2x-1
已知函数f(x)=sin(2x+π/6)+sin(2x-π/6)+2cos²x