设函数f(x)定义域为R,对于任意的x1,x2属于R,函数都有f(x1+x2)=f(x1)f(x2)证f(x)>0
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 03:55:30
设函数f(x)定义域为R,对于任意的x1,x2属于R,函数都有f(x1+x2)=f(x1)f(x2)证f(x)>0
f(x)=f(x/2 + x/2) = [f(x/2)]^2 >= 0.
此函数可以是恒等于0.
如果要 f(x) 严格大于 0,必须另加条件.比如 f(x)不恒等于0,且在x=0处连续.
下面证明这个条件下 f(x) 严格大于 0.
存在a 使得 f(a)不等于0,
f(a+0)=f(a)*f(0) => f(a)*(f(0)-1)=0 => f(0)=1
如果 存在 b 使得 f(b) = 0,
0=f(b)=f(b/n + b/n + b/n...+ b/n)
=f(b/n)*f(b/n+ b/n...+b/n)
= [f(b/n)]^2*f( b/n...+b/n)
= ...
=[f(b/n)]^n
所以 f(b/n) = 0
因为 b/n --> 0,而f(x) 在x=0处连续,所以 f(0) = 0 这与前面得到的f(0)=1矛盾,所以 f(x) 恒大于0.
此函数可以是恒等于0.
如果要 f(x) 严格大于 0,必须另加条件.比如 f(x)不恒等于0,且在x=0处连续.
下面证明这个条件下 f(x) 严格大于 0.
存在a 使得 f(a)不等于0,
f(a+0)=f(a)*f(0) => f(a)*(f(0)-1)=0 => f(0)=1
如果 存在 b 使得 f(b) = 0,
0=f(b)=f(b/n + b/n + b/n...+ b/n)
=f(b/n)*f(b/n+ b/n...+b/n)
= [f(b/n)]^2*f( b/n...+b/n)
= ...
=[f(b/n)]^n
所以 f(b/n) = 0
因为 b/n --> 0,而f(x) 在x=0处连续,所以 f(0) = 0 这与前面得到的f(0)=1矛盾,所以 f(x) 恒大于0.
设函数F(X)的定义域为R,对任意实数X1,X2,有F(X1)+F(X2)=2F(X1+X2/2)乘以F(X1-X2)/
设函数f(x)的定义域为R,对任意实数x1,x2,有f(x1)+f(x2)=2f{(x1+x2)/2}×f{(x1-x2
函数f(x),x属于R,若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)*f(x2),求证
望数学帝指教设函数f(x)是定义域为R上的增函数 且f(x)不等于0,对于任意的x1 x2属于R,都有f(x1+x2)=
设函数f(x)的定义域为R,对任意x1,x2属于R恒有f(x1+x2)=f(x1)+f(x2)证f(x)是奇函数
函数f(x)的定义域是R,对于任意实数x1,x2,都有f(x1+x2)=f(x1)+f(x2)
函数f(x),x∈R,若对于任意实数x1,x2都有f(x1+x2)+f(x1-x2)=2f(x1).f(x2),求证f(
设函数f(x)是定义域在R上的函数,若对任意X1,X2都有f(X1+X2)+f(x1-x2)=2f(x1)f(x2)求f
设函数f(x)的定义域为R,对任意实数x1,x2,总有f(x1+x2)=f(x1)*f(x2)
已知函数f(x)的定义域为{x/x属于R且x不等于0},对于定义域内的任意x1,x2都有f(x1*x2)=f(x1)+f
函数f(x),x属于R 且f(x)不恒为0 若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1
函数F(X),X属于R,若对于任意实数X1,X2都有F(X1+X2)+F(X1-X2)=2F(X1)F(X2)求证F(X