函数f(x)=1/(4^x+m) (m>0),x1,x2属于R,当x1+x2=1时,f(x1)+f(x2)=1/2,求m
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:11:45
函数f(x)=1/(4^x+m) (m>0),x1,x2属于R,当x1+x2=1时,f(x1)+f(x2)=1/2,求m的值
(2)已知数列{an}满足an=f(0)+f(1/n)+f(2/n)+……+f[(n-1)/n]+f(1),求an
“=[f(0/2k)+f(2k/2k)]+[f(1/2k)+f((2k-1)/2k)]+ … +[f((k-1)/2k)+f((k+1)/2k)]+f(k/2k)
=1/2+1/2+ … +1/2+f(1/2) ………… 有k个1/2 ”
(2)已知数列{an}满足an=f(0)+f(1/n)+f(2/n)+……+f[(n-1)/n]+f(1),求an
“=[f(0/2k)+f(2k/2k)]+[f(1/2k)+f((2k-1)/2k)]+ … +[f((k-1)/2k)+f((k+1)/2k)]+f(k/2k)
=1/2+1/2+ … +1/2+f(1/2) ………… 有k个1/2 ”
1.令x1=x2=1/2,f(1/2)=1/(2+m),f(1/2)+f(1/2)=1/2
因此1/(2+m)=1/4,m=2
2.x1+x2=1时,f(x1)+f(x2)=1/2,f(1/2)=1/4,an=f(0)+f(1/n)+f(2/n)+.+f(n/n)
因此当n为偶数2k时,k=n/2:
an=a(2k)
=[f(0/2k)+f(2k/2k)]+[f(1/2k)+f((2k-1)/2k)]+ … +[f((k-1)/2k)+f((k+1)/2k)]+f(k/2k)
=1/2+1/2+ … +1/2+f(1/2) ………… 有k个1/2
=k/2+1/4
=(n+1)/4
当n为奇数2k-1时,k=(n+1)/2:
an=a(2k-1)
=[f(0/(2k-1))+f((2k-1)/(2k-1))]+[f(1/(2k-1))+f((2k-2)/(2k-1)]+ … +[f((k-1)/(2k-1))+f(k/(2k-1))]
=1/2+1/2+ … +1/2+f(1/2) ………… 有k个1/2
=k/2
=(n+1)/4
综上,an=(n+1)/4
因此1/(2+m)=1/4,m=2
2.x1+x2=1时,f(x1)+f(x2)=1/2,f(1/2)=1/4,an=f(0)+f(1/n)+f(2/n)+.+f(n/n)
因此当n为偶数2k时,k=n/2:
an=a(2k)
=[f(0/2k)+f(2k/2k)]+[f(1/2k)+f((2k-1)/2k)]+ … +[f((k-1)/2k)+f((k+1)/2k)]+f(k/2k)
=1/2+1/2+ … +1/2+f(1/2) ………… 有k个1/2
=k/2+1/4
=(n+1)/4
当n为奇数2k-1时,k=(n+1)/2:
an=a(2k-1)
=[f(0/(2k-1))+f((2k-1)/(2k-1))]+[f(1/(2k-1))+f((2k-2)/(2k-1)]+ … +[f((k-1)/(2k-1))+f(k/(2k-1))]
=1/2+1/2+ … +1/2+f(1/2) ………… 有k个1/2
=k/2
=(n+1)/4
综上,an=(n+1)/4
已知函数f(x)=lgx(x属于R+)若x1,x2属于R+,比较1/2[f(x1)+f(x2)f[(x1+x2)/2]的
抽象函数题1、f(x1/x2)=f(x1)-(x2)且当x>1时,f(x)1 若f(4)=5,解不等式f(3m^-m-2
已知f(x)=1/4 的x幂+m,(m>0),对于任意实数X1,X2当x1 + x2 =1时,f(x1)+f(x2)=1
函数f(x),x属于R,若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)*f(x2),求证
对于函数f(x)的定义域中任意的x1,x2(x1≠x2),有如下结论(1)f(x1+x2)=f(x1)*f(x2) (2
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f
已知x1,x2为R+,4^X=(1+f(x)\=(1-f(x))且f(x1)+f(x2)=1求f(X1+x2)的min
函数f(x)=-(x-1)^2(x=1)满足对任意x1不等于x2,都有(f(x1)-f(x2))/x1-x2>0,求a取
已知函数f(x)=2^x,x1,x2是任意实数,且x1≠x2.证明1/2[f(x1)+f(x2)]>f[(x1+x2)/
定义在区间(0,正无穷大)上的函数f(x)满足 f(x1/x2)=f(x1)-f(x2) ,且当 x>1 时,f(x)
对于函数f(x)定义域中任意的x1、x2(x1≠x2),有如下结论:(1)f(x1+x2)=f(x1)+f(x2);
若定义在R上的函数f(x)对任意的x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(