作业帮 > 数学 > 作业

一道几何不等式如何证明

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 07:57:00
一道几何不等式如何证明
△ABC中,(1/ha+1/hb+/hc)^2>4/3(1/a+1/b+1/c)^2,其中ha、hb、hc为三边的高.
一道几何不等式如何证明
变一下形
1/ha=a/2s
移项开方,等价于a+b+c>=4s/(根号3)*(1/a+1/b+1/c)
s=abc/4r,a=2rsinA
代入即 (根号3)/2(sigma sinA)>=sigma sinAsinB
只需(根号3)/2(sigma sinA)》=1/3(sigma sinA)^
即 3(根号3)/2》=sigma sinA
琴声不等式即可(亦可由等周定理得到)