【高中数学】已知函数--- .(1)判断单调性(2)作出图像,并依据图像写出值域
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 09:53:53
【高中数学】已知函数--- .(1)判断单调性(2)作出图像,并依据图像写出值域
【我的问题】(1)这个函数的单调性如果不用定义法,怎么来判断?
(2)怎么做出函数图像?
如图:
==网上有用求导的方法判断“单调性”的,但我们高一没学那!
【我的问题】(1)这个函数的单调性如果不用定义法,怎么来判断?
(2)怎么做出函数图像?
如图:
==网上有用求导的方法判断“单调性”的,但我们高一没学那!
不能求导没关系.用定义也可以做哦
可知,f(x)为奇函数.那我们就研究x>0的情况.
令a,b>0
f(a)-f(b)=2(a/a²+1-b/b²+1)
=2(ab²+a-ba²-b)/(a²+1)(b²+1)
对,还是通分,可以看出,分母是大于零的,下面处理分子
ab²+a-ba²-b=ab²-ba²+a-b
=ab(b-a)+(a-b)
=(a-b)(1-ab)
所以可以看出,当a,b∈(0,1),1-ab>o,则f(a)-f(b)同a-b同号.那么可知,f(x)在(0,1)上单调增
而同样地,当a,b∈(1,+∞),ab>1,1-ab0的图像了,x
可知,f(x)为奇函数.那我们就研究x>0的情况.
令a,b>0
f(a)-f(b)=2(a/a²+1-b/b²+1)
=2(ab²+a-ba²-b)/(a²+1)(b²+1)
对,还是通分,可以看出,分母是大于零的,下面处理分子
ab²+a-ba²-b=ab²-ba²+a-b
=ab(b-a)+(a-b)
=(a-b)(1-ab)
所以可以看出,当a,b∈(0,1),1-ab>o,则f(a)-f(b)同a-b同号.那么可知,f(x)在(0,1)上单调增
而同样地,当a,b∈(1,+∞),ab>1,1-ab0的图像了,x
已知函数f(x)是幂函数,且过点(3,3倍根号3)(1)判断函数的单调性,并作出函数的图像
研究函数y=x2/1的奇偶性,单调性,并作出函数的图像
高中数学的所有重要函数图像及其性质 图像特点 单调性 定义域 值域等
已知函数y=(1/2)^(|x-1|),求其定义域、值域,并作出其图像
已知f(x)=丨x-2丨+2 (1)利用分段函数的形式表示该函数 (2)作出函数图像,并求其值域
已知函数f(cosx-1)=cos^2x,做出y=fx的图像,并讨论y=fx的性质(定义域,值域,周期,奇偶性,单调性,
已知幂函数y=f(x)的图像过点(2,1/4),试求出函数的解析式,并判断奇偶性 单调性
画出函数y=x-2的图像并判断其单调性
作函数图象高一已知函数f(x)=2x/x^2+1 求函数定义域,值域,判断奇偶性,单调性,作出其图象~
判断f(x)=根号(3x+1)-根号(2-x)的单调性并求出该函数值域
讨论函数y=x^(2/5)的定义域,值域,奇偶性,单调性,并画出函数的图像.
设函数f(x)=-x3-x (1)判断f(x)的奇偶性,单调性,并画函数的大致图像