作业帮 > 数学 > 作业

将两个全等直角三角形abc和dbe按图一方式摆放,其中∠acb=∠deb=90度,∠a=∠d=30°点E落在AB上,DE

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 07:16:25
将两个全等直角三角形abc和dbe按图一方式摆放,其中∠acb=∠deb=90度,∠a=∠d=30°点E落在AB上,DE所在直线交于点F,1、求证:AF+EF=DE 2、变式1:若将图一中△DBE绕点B进按顺时针方向,旋转角阝,且60°
将两个全等直角三角形abc和dbe按图一方式摆放,其中∠acb=∠deb=90度,∠a=∠d=30°点E落在AB上,DE
1)如图,连接BF,由△ABC≌△DBE,可得BC=BE,根据直角三角形的“HL”定理,易证△BCF≌△BEF,即可证得;
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.
(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
是否可以解决您的问题?
再问: 第1题求证AF+EF=DE