如图1,⊙O在直角坐标系中是一个以原点为圆心,半径为4的圆,AB是过圆心O的直径,点P从点B出发沿圆O做匀速运动,过点P
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 06:49:09
如图1,⊙O在直角坐标系中是一个以原点为圆心,半径为4的圆,AB是过圆心O的直径,点P从点B出发沿圆O做匀速运动,过点P作PC垂直于半径AB,PC的长度随着点P的运动而变化.(各组数据已标出)
(1)当P点的位置如图所示时,求∠OPC和∠POC的度数.
(2)当P点的位置如图所示时,求PC的值.
(3)探究:PC的长度随着∠BOP的变化而变化,设PC的值为y,∠BOP为x,
并规定:①PC在x轴上方记为正,在x轴下方记为负;②逆时针旋转得到的角度记为正,顺时针旋转得到的角度记为负;③π=180°, 1 2 π=900.请写出y关于x的函数关系式,以及x的取值范围.(直接写出答案)
(4)在图2试画出第(3)题中函数的图象.
(5)求出该函数图象的对称轴.(直接写出答案,答案请用含有π的式子表示
3,4问不懂
(1)当P点的位置如图所示时,求∠OPC和∠POC的度数.
(2)当P点的位置如图所示时,求PC的值.
(3)探究:PC的长度随着∠BOP的变化而变化,设PC的值为y,∠BOP为x,
并规定:①PC在x轴上方记为正,在x轴下方记为负;②逆时针旋转得到的角度记为正,顺时针旋转得到的角度记为负;③π=180°, 1 2 π=900.请写出y关于x的函数关系式,以及x的取值范围.(直接写出答案)
(4)在图2试画出第(3)题中函数的图象.
(5)求出该函数图象的对称轴.(直接写出答案,答案请用含有π的式子表示
3,4问不懂
解题思路: (1)利用三角函数就可解决问题. (2)运用勾股定理即可解决问题. (3)根据条件中的规定就可得到y=4sinx,其中x为任意实数. (4)可用描点法画出(3)中函数的图象. (5)由图可知:该图象的对称轴有无数个,这些对称轴方程分别为…,x=-3π 2 ,x=-π 2 ,x=π 2 ,x=3π 2 ,…,从而可归纳出该图象的对称轴方程.
解题过程:
解题过程:
在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆O,点P是圆O在第一象限中的一个动点,过点P作圆O的切
在平面直角坐标系中 已知a (3,0 ),B(0,4),O为坐标原点,以点P为圆心的圆P半径为1
如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O上一动点且在第一象限内,过点P作⊙O的切线,与x、y
已知圆O的圆心在直角坐标系的原点,半径为1,点P是圆O上的一个动点(不在坐标轴上),
已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的圆P与x轴,y轴分别相切于点M和点N,点F从点M出发,
如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x
如图,在平面直角坐标系xoy中,直线AB过点A(-4,0),B(0,4),圆的半径为1原点为圆心,点P在直线AB上,过点
如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与Y轴交于点A,点P(4,2)是圆O外一点
如图,在平面直角坐标系xOy中,直线AB过点A(-4,0),B(0,4)圆O的半径为1(O为坐标原点)
如图,以直角坐标系的原点O为圆心,以1为半径做圆,若点P是该圆上第一象限内的一点,且OP与x轴
(2001沈阳)已知:如图,在直角坐标系中,以y轴上的点C为圆心,1为半径的圆与劣轴相切于原点O.点P在x轴的负半轴上,
如图,在平面直角坐标系中,以原点O为圆心做圆,半径为2,将直线y=x平移得到直线l,直线l与x轴的交点为P点,若直线l与