作业帮 > 数学 > 作业

设函数f(X)=ax的平方+bx+1(ab均属于R)满足:f(-1)=0,且对任意实数X均有f(x)≥0成立

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 19:47:15
设函数f(X)=ax的平方+bx+1(ab均属于R)满足:f(-1)=0,且对任意实数X均有f(x)≥0成立
( 1 )求实数A,b的值.(2)当x∈【-2,2】时,求函数v1
设函数f(X)=ax的平方+bx+1(ab均属于R)满足:f(-1)=0,且对任意实数X均有f(x)≥0成立
f(x)=ax²+bx+1,
f(-1)=0,则有
0=a-b+1,
b=a+1.
∵对任意实数X均有f(x)≥0成立,
∴△=b²-4ac=b²-4a≤0,
即,(a+1)²-4a≤0,
(a-1)²≤0,则有
a-1=0,而,(a-1)²是不可能小于零的,即有
a=1,b=2.
那么,f(x)=x²+2x+1.
f(x)=(x+1)².当x∈【-2,2】时,
f(x)的最小值是,当X=-1时,f(-1)=0,
f(x)的最大值是,当X=2时,f(2)=9.