在数列{an}中,a1=2/3,且对任意的n∈正实数都有 a(n+1)=2an/an+1
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 15:01:00
在数列{an}中,a1=2/3,且对任意的n∈正实数都有 a(n+1)=2an/an+1
求证{1/an —1}是等比数列
注意a(n+1)中(n+1)是a的右下标
求证{1/an —1}是等比数列
注意a(n+1)中(n+1)是a的右下标
n是正整数,不是正实数,项数只能是正整数.
a(n+1)=2an/(an +1)
1/a(n+1)=(an +1)/(2an)=(1/2)(1/an) +1/2
1/a(n+1) -1=(1/2)(1/an) -(1/2)=(1/2)(1/an -1)
[1/a(n+1) -1]/(1/an -1)=1/2,为定值.
1/a1-1=1/(2/3) -1=3/2-1=1/2
数列{1/an -1}是以1/2为首项,1/2为公比的等比数列.
a(n+1)=2an/(an +1)
1/a(n+1)=(an +1)/(2an)=(1/2)(1/an) +1/2
1/a(n+1) -1=(1/2)(1/an) -(1/2)=(1/2)(1/an -1)
[1/a(n+1) -1]/(1/an -1)=1/2,为定值.
1/a1-1=1/(2/3) -1=3/2-1=1/2
数列{1/an -1}是以1/2为首项,1/2为公比的等比数列.
在数列{an}中,a1=1/3,并且对任意n属于N*,n≥2都有an×an-1=an-1-an成立
【【【【已知数列{an}中,a1=5/6,且对且对任意自然数n都有an+1=1/3an+(1/2)^(n+1)】】】】
在数列{an}中,a1=2010,且对任意正整数,都有a(n+2)=a(n+1)-an,则a2+a3+a4+……+a20
设数列{an}的各项都是正数,且对任意n属于N+,都有an(an+1)=2(a1+a3+.+an).
已知数列{an}中,a1=3,对任意自然数n都有2/an-a(n-1)=n(n+1),求数列{an}的通项公式
已知数列{an}中,a1=5/6,且对且对任意自然数n都有an+1=1/3an+(1/2)^(n+1)数列{bn}对任意
已知数列{an},a1=1,对任意自然数N都有an=a(n-1)+2n-1,求{an}的通项公式
在数列{an}中,已知对任意正整数n,有a1+a2+...+an=2的n次方-1,那么a1的平方+a2的平方+...+a
在数列{an}中,a1=2,且对任意自然数n,3an-1-an=0,则an=
在数列an中,a1=2,且对任意自然数n,3an+1-an=0则an=
已知数列an满足对任意的n∈N*,都有an>0,且a1^3+a2^3+.an^3=(a1+a2+.an)^2.
已知数列an的首项a1=3R,对任意自然数n都有2R/(an-an+1)=n(n+1)