高中数学-函数和数列的综合(悬赏+10)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 06:59:19
高中数学-函数和数列的综合(悬赏+10)
设f1(x)=2/(1+x),定义f(n+1)(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2] (n∈N+)
(1) 求数列{an}的通项公式
(2) 求T(2n)=(a1)+2(a2)+3(a3)+...+(2n)(a2n),Qn=[4(n^2)+n]/[4(n^2)+4n+1] (n∈N+),试比较 9T(2n) 与 Qn 的大小,并说明理由
符号比较乱,还有很多下标,凑合着看吧,
设f1(x)=2/(1+x),定义f(n+1)(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2] (n∈N+)
(1) 求数列{an}的通项公式
(2) 求T(2n)=(a1)+2(a2)+3(a3)+...+(2n)(a2n),Qn=[4(n^2)+n]/[4(n^2)+4n+1] (n∈N+),试比较 9T(2n) 与 Qn 的大小,并说明理由
符号比较乱,还有很多下标,凑合着看吧,
先写第一问,太长了,下次再写第二问.而且我怕太长会审核很久,见谅见谅~如果你觉得对的话,然后我再把后续的写上去吧.
(1)由已知得:a1=(2-1)/(2+2)=1/4,fn(0)=-(2an+1)/(an-1)
那么当n=k+1时,
a(k+1)=[f(k+1)(0)-1]/[f(k+1)(0)+2]
=[f1[fk(0)]-1]/[f1[fk(0)]+2]
={2/[1+fk(0)]-1}/{2/[1+fk(0)]+2}
=[1-fk(0)]/[4+2fk(0)]
=[1+(2ak+1)/(ak-1)]/[4-2(2ak+1)/(ak-1)]
=(ak-1+2ak+1)/(4ak-4-4ak-2)
=-1/2*ak
所以{an}是以1/4为首项,-1/2为公比的等比数列
所以an=(-2)^[-(n+1)]
补上第二小题:
第二小题比较复杂,所以很多都简略了,如果有不清楚的地方可以随时追问.
(2)用错位相减法:
T(2n)= 1*1/4+2*(-1/8)+3*1/16+...+(2n-1)*(-2)^(-2n)+2n*(-2)^[-(2n+1)]
-2T(2n)=-1*1/2+2*1/4+3*(-1/8)+...+2n*(-2)^(-2n)
两式相减:
3T(2n)=1/2 -[1/4 -1/8 +1/16+...+(-2)^(-2n)] +2n*(-2)^[-(2n+1)]
3T(2n)=1/2-1/4*{1-(-2)^[-(2n+2)]}/[1-(-2)]+2n*(-2)^[-(2n+1)]
9T(2n)=5/4+(-2)^(-2n)+6n*(-2)^[-(2n+1)]
9T(2n)=5/4+2^(-2n)-6n*2^[-(2n+1)]
9T(2n)=5/4+2^(-2n)-6n*1/2*2^(-2n)
9T(2n)=5/4-(3n-1)*2^(-2n)
9T(2n)=5/4-(3n-1)/2^2n
而Qn=(4n^2+4n+1-3n-1)/(4n^2+4n+1)=1-(3n-1)/(4n^2+4n+1)
相减比较大小:
所以,
9T(2n)-Qn=1/4+(3n-1)[1/(2n+1)^2-1/2^2n),(n∈N+)
现在比较f1(n)=(2n+1)^2和f2(n)=2^2n的大小:
n f1(n) f2(n)
1 9 4
2 25 16
3 49 64
结合f1(n)和f2(n)的单调性,得知当n>=3的时候,f1(n)=3时,1/(2n+1)^2>1/2^2n(倒数后符号变向),那么9T(2n)>Qn
当n=1时,9T(2n)-Qn=1/4+2*(1/9-1/4)=-1/36Qn
综上所述,当n=1的时候,9T(2n)=2的时候,9T(2n)>Qn
(1)由已知得:a1=(2-1)/(2+2)=1/4,fn(0)=-(2an+1)/(an-1)
那么当n=k+1时,
a(k+1)=[f(k+1)(0)-1]/[f(k+1)(0)+2]
=[f1[fk(0)]-1]/[f1[fk(0)]+2]
={2/[1+fk(0)]-1}/{2/[1+fk(0)]+2}
=[1-fk(0)]/[4+2fk(0)]
=[1+(2ak+1)/(ak-1)]/[4-2(2ak+1)/(ak-1)]
=(ak-1+2ak+1)/(4ak-4-4ak-2)
=-1/2*ak
所以{an}是以1/4为首项,-1/2为公比的等比数列
所以an=(-2)^[-(n+1)]
补上第二小题:
第二小题比较复杂,所以很多都简略了,如果有不清楚的地方可以随时追问.
(2)用错位相减法:
T(2n)= 1*1/4+2*(-1/8)+3*1/16+...+(2n-1)*(-2)^(-2n)+2n*(-2)^[-(2n+1)]
-2T(2n)=-1*1/2+2*1/4+3*(-1/8)+...+2n*(-2)^(-2n)
两式相减:
3T(2n)=1/2 -[1/4 -1/8 +1/16+...+(-2)^(-2n)] +2n*(-2)^[-(2n+1)]
3T(2n)=1/2-1/4*{1-(-2)^[-(2n+2)]}/[1-(-2)]+2n*(-2)^[-(2n+1)]
9T(2n)=5/4+(-2)^(-2n)+6n*(-2)^[-(2n+1)]
9T(2n)=5/4+2^(-2n)-6n*2^[-(2n+1)]
9T(2n)=5/4+2^(-2n)-6n*1/2*2^(-2n)
9T(2n)=5/4-(3n-1)*2^(-2n)
9T(2n)=5/4-(3n-1)/2^2n
而Qn=(4n^2+4n+1-3n-1)/(4n^2+4n+1)=1-(3n-1)/(4n^2+4n+1)
相减比较大小:
所以,
9T(2n)-Qn=1/4+(3n-1)[1/(2n+1)^2-1/2^2n),(n∈N+)
现在比较f1(n)=(2n+1)^2和f2(n)=2^2n的大小:
n f1(n) f2(n)
1 9 4
2 25 16
3 49 64
结合f1(n)和f2(n)的单调性,得知当n>=3的时候,f1(n)=3时,1/(2n+1)^2>1/2^2n(倒数后符号变向),那么9T(2n)>Qn
当n=1时,9T(2n)-Qn=1/4+2*(1/9-1/4)=-1/36Qn
综上所述,当n=1的时候,9T(2n)=2的时候,9T(2n)>Qn
函数和数列的综合题已知函数f(x)=1/根号下x^2-4 (x
求高中数学指数函数和数列的知识总结
一道函数和数列结合的题
函数和数列
函数和数列的综合问题已知函数f(x)=ax+2/x+b的图象关于点(-2,3)对称,(1)求实数a,b的值.(2)若数列
高中向量和数列综合题,不难
函数和数列综合题已知函数f(x)=x-sinx,数列{a(n)}满足0
高分求利用海涅定理和数列极限证明函数的性质(在线等!)
关于函数极限和数列极限的区别
高中第10道选择题函数和数列
数学2个题求解(函数和数列).
函数和数列综合~已知函数Y=f(x) 的定义域R 当x1 对在R中 任意 X Y 满足 f(x).f(y)=f(x+y)