已知数列{an}是各项均不为0的等差数列,Sn为其前n项的和,且满足an^2=S2n-1,令bn=1/(an*an+1)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:28:13
已知数列{an}是各项均不为0的等差数列,Sn为其前n项的和,且满足an^2=S2n-1,令bn=1/(an*an+1),
数列{bn}的前n项和为Tn,(1)求数列{an}的通项公式及数列{bn}的前n项和为Tn,(2)是否存在正整数m,n(1
数列{bn}的前n项和为Tn,(1)求数列{an}的通项公式及数列{bn}的前n项和为Tn,(2)是否存在正整数m,n(1
(1) 由题意可得
S(2n-1)=(a1+a(2n-1))*(2n-1)/2=an*(2n-1)
∵an^2=S(2n-1) ,an>0
∴an=2n-1
∵bn=1/(an*an+1)
∴bn=1/(2n-1)(2(n+1))=1/2(1/(2n-1)-1/(2n+1))
Tn=b1+b2+.bn=1/2(1-1/3+1/3-1/5.+1/(2n-1)-1/(2n+1))=n/(2n+1)
(2)由题可得
T1=1/3,Tm=m/(2m+1),Tn=n/(2n+1)
∵T1,Tm,Tn 成等比数列
∴T1*Tn=(Tm)^2即n/3(2n+1)=(m/(2m+1))^2
整理得2nm^2-4mn-n+3m^2=0
∴n=3m^2/(1+4m-2m^2)=3m^2/(-2(m-1)^2+3)
∵m,n∈N* 1<m<n
∴m=2,n=12时 符合要求.
∴存在n,m使T1,Tm,Tn成等比数列且m=2,n=12时成立
S(2n-1)=(a1+a(2n-1))*(2n-1)/2=an*(2n-1)
∵an^2=S(2n-1) ,an>0
∴an=2n-1
∵bn=1/(an*an+1)
∴bn=1/(2n-1)(2(n+1))=1/2(1/(2n-1)-1/(2n+1))
Tn=b1+b2+.bn=1/2(1-1/3+1/3-1/5.+1/(2n-1)-1/(2n+1))=n/(2n+1)
(2)由题可得
T1=1/3,Tm=m/(2m+1),Tn=n/(2n+1)
∵T1,Tm,Tn 成等比数列
∴T1*Tn=(Tm)^2即n/3(2n+1)=(m/(2m+1))^2
整理得2nm^2-4mn-n+3m^2=0
∴n=3m^2/(1+4m-2m^2)=3m^2/(-2(m-1)^2+3)
∵m,n∈N* 1<m<n
∴m=2,n=12时 符合要求.
∴存在n,m使T1,Tm,Tn成等比数列且m=2,n=12时成立
已知数列an是各项均不为0的等差数列,Sn为其前n项和,且满足S2n-1=1/2an^2,数列bn满足,当n为奇数时bn
已知数列{an}各项均为正数,其前N项和为sn,且满足4sn=(an+1)^2.求{an}的通项公式
已知数列An满足An>0,其前n项和为Sn为满足2Sn=An的平方+An(1)求An(2)设数列Bn满足An/2的n次方
已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列
已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=an^2+n-4,(1)求证an为等差数列 (2)求an的通项
已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2
各项均为正数的数列{an}的前n项和为S,且sn=1\8(an+2)².求证数列{an}是等差数列
已知数列an的各项均为正数,前n项和为sn,且sn=an(an+1)/2,n为正整数 求证 1.数列an是等差数列
已知数列an满足a1=2 其前n项和为Sn Sn =n+7~3an 数列bn满足 bn=an~1 证明数列bn是等差数列
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
已知数列{an}中各项是从1、0、-1这三个整数中取值的数列,Sn为其前n项和,定义bn=(an+1)2,且数列{bn}
已知数列{an}的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数).令bn=2^n*an,求证数列{bn}