高二数学直线方程问题1,设a,b,c分别是△ABC中∠A,∠B,∠C所对边的边长,则直线sinA·x+ay+c=0与bx
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 00:14:58
高二数学直线方程问题
1,设a,b,c分别是△ABC中∠A,∠B,∠C所对边的边长,则直线sinA·x+ay+c=0与bx-sinB·y+sinC=0的位置关系是_______
2,两条互相平行的直线L1与L2分别经过定点A(6,2)和B(-3,-1),并各自绕定点旋转,设L1与L2间的距离为d,(1)求d的变化范围 (2)当d最大时,求L1与L2的方程
3,已知△ABC的顶点A(3,-1),AB边上的中线所在的直线方程为3x+7y-19=0,AC边上的高所在的直线的方程为6x-5y-15=0,求BC边所在直线方程
1,设a,b,c分别是△ABC中∠A,∠B,∠C所对边的边长,则直线sinA·x+ay+c=0与bx-sinB·y+sinC=0的位置关系是_______
2,两条互相平行的直线L1与L2分别经过定点A(6,2)和B(-3,-1),并各自绕定点旋转,设L1与L2间的距离为d,(1)求d的变化范围 (2)当d最大时,求L1与L2的方程
3,已知△ABC的顶点A(3,-1),AB边上的中线所在的直线方程为3x+7y-19=0,AC边上的高所在的直线的方程为6x-5y-15=0,求BC边所在直线方程
1.L1:sinA•x+ay+c=0与L2:bx-sinB•y+sinC=0的斜截式方程分别为:
L1:y=[-(sinA)/a]•x-c/a与L2: y=(b/sinB)•x+sinC/sinB.
由正弦定理:b/sinB=a/sinA,所以[-(sinA)/a]•(b/sinB)=-1,
L1、L2的斜率互为负倒数,所以两直线垂直.
2.直线AB的方程为:(y-2)/(x-6)=(2+1)/(6+3),即y=x/3,斜率k=1/3,|AB|²=(2+1)²+(6+3)²=100,|AB|=10. 在保持平行的前提下,L1、L2各自绕定点旋转,当旋转到重合时,L1、L2、AB三条直线重合,此时d=0; 当旋转到L1、L2两条直线都与AB垂直时,d最大,此时d=|AB|=10. 所以0≤d≤10.
3.设AC边上的高为BD(垂足为D),已知直线BD的方程为6x-5y-15=0,斜率为6/5,所以直线AC的斜率为-5/6,又A(3,-1),所以直线AC的方程为:y+1=-5/6•(x-3),一般式:5x+6y-9=0.
设AB边上的中点为E,已知直线CE的方程为3x+7y-19=0,与直线AC的方程:5x+6y-9=0联立,求得C(-3,4).
作EF⊥AC于F,则EF//BD,因为E为AB中点,由平行截割定理知,2|FD|=|AD|,而|FD|等于E到BD的距离,设E(e,(19-3e)/7),所以有
2|6*e-5*(19-3e)/7-15|/√(6²+5²)=|6*3-5*(-1)-15|/√(6²+5²),
即|57e-200|=28,得到e的两个值:4 or 172/57,所以,满足条件的E点有两个:E1(4,1)、E2(172/57,27/19).
设B(p,q),因为E为AB中点,
对于E1(4,1),A(3,-1),(p+3)/2=4,(q-1)/2=1,B1(5,3);
对于E2(172/57,27/19),A(3,-1),(p+3)/2=172/57,(q-1)/2=27/19,B2(173/57,73/19),将B2(173/57,73/19)代入BD的方程6x-5y-15=0,不成立,舍去.
所以B(5,3),直线BC的方程为:(y-4)/(x+3)=(3-4)/(5+3),即x+8y-19=0
L1:y=[-(sinA)/a]•x-c/a与L2: y=(b/sinB)•x+sinC/sinB.
由正弦定理:b/sinB=a/sinA,所以[-(sinA)/a]•(b/sinB)=-1,
L1、L2的斜率互为负倒数,所以两直线垂直.
2.直线AB的方程为:(y-2)/(x-6)=(2+1)/(6+3),即y=x/3,斜率k=1/3,|AB|²=(2+1)²+(6+3)²=100,|AB|=10. 在保持平行的前提下,L1、L2各自绕定点旋转,当旋转到重合时,L1、L2、AB三条直线重合,此时d=0; 当旋转到L1、L2两条直线都与AB垂直时,d最大,此时d=|AB|=10. 所以0≤d≤10.
3.设AC边上的高为BD(垂足为D),已知直线BD的方程为6x-5y-15=0,斜率为6/5,所以直线AC的斜率为-5/6,又A(3,-1),所以直线AC的方程为:y+1=-5/6•(x-3),一般式:5x+6y-9=0.
设AB边上的中点为E,已知直线CE的方程为3x+7y-19=0,与直线AC的方程:5x+6y-9=0联立,求得C(-3,4).
作EF⊥AC于F,则EF//BD,因为E为AB中点,由平行截割定理知,2|FD|=|AD|,而|FD|等于E到BD的距离,设E(e,(19-3e)/7),所以有
2|6*e-5*(19-3e)/7-15|/√(6²+5²)=|6*3-5*(-1)-15|/√(6²+5²),
即|57e-200|=28,得到e的两个值:4 or 172/57,所以,满足条件的E点有两个:E1(4,1)、E2(172/57,27/19).
设B(p,q),因为E为AB中点,
对于E1(4,1),A(3,-1),(p+3)/2=4,(q-1)/2=1,B1(5,3);
对于E2(172/57,27/19),A(3,-1),(p+3)/2=172/57,(q-1)/2=27/19,B2(173/57,73/19),将B2(173/57,73/19)代入BD的方程6x-5y-15=0,不成立,舍去.
所以B(5,3),直线BC的方程为:(y-4)/(x+3)=(3-4)/(5+3),即x+8y-19=0
已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相
已知三角行ABC中,内角A、B、C、所对边的长分别是a、b、c、且点(sinA,csinC)在直线x-y=(a-b)si
在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值
在三角形ABC中,角A,B,C的对边分别为a,b,c,点 (a,b)在直线x(sinA-sinB)+ysinB=csin
数学一元二次方程,已知a b c分别是△ABC中∠A,∠B,∠C所对的边,且关于x的方程(c-b)x²+2(b
高一数学 正余弦定理在三角形ABC中,abc分别是角ABC所对的边长,若(a+b-c)*(sinA+sinB-sinC)
在△ABC中,a,b,c分别是∠A,∠B,∠C的对边长,已知2sinA=3cosA.
在三角形ABC中,已知角A、B、C所对的边分别是a、b、c,且直线M:cx+y+1=0与直线N:(a^2+b^2-3/2
已知△ABC中,∠A,∠B,∠C的对边分别是a,b,c,如果sinA和sinB是方程4x²+kx+2=0的两个
设a,b,c分别是三角形ABC的三个内角A,B,C所对的边,S△ABC=a^-(b-C)^2,则sinA/1-cosA=
设△ABC的一个顶点是A(3,-1),∠B,∠C的平分线方程分别是x=0,y=x,则直线BC的方程是( )
一道三角函数的数学题在△ABC中,abc分别是角A、 B、 C所对的边长,若(a+b-c)*(sinA+sinB-sin