一道初三代数题已知x,y,z是正整数,且满足x^3-y^3-z^3=3xyz,x^2=2(y+z),求xy+yz+zx的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 20:00:25
一道初三代数题
已知x,y,z是正整数,且满足x^3-y^3-z^3=3xyz,x^2=2(y+z),求xy+yz+zx的值
已知x,y,z是正整数,且满足x^3-y^3-z^3=3xyz,x^2=2(y+z),求xy+yz+zx的值
x^3-y^3-z^3=3xyz
x^3-y^3-z^3-3xyz
=[(x-y)^3-3xy(x-y)]-z^3-3xyz
=[(x-y)^3-z^3]-3xy(x-y-z)
=[(x-y-z)^3-3(x-y)z(x-y-z)]-3xy(x-y-z)
=(x-y-z)^3-3(-xy+yz-zx)(x-y-z)
=(x-y-z)[(x-y-z)^2-3(-xy+yz-zx)]
=(x-y-z)(x^2+y^2+z^2+xy-yz+zx)=0
若x^2+y^2+z^2+xy-yz+zx=0
2x^2+2y^2+2z^2+2xy-2yz+2zx=0
(x^2+2xy+y^2)+(y^2-2yz+z^2)+(z^2+2zx+x^2)=0
所以(x+y)^2+(y-z)^2+(z+x)^2=0
所以只有x+y=0,y-z=0,z+x=0
所以y=z=-x
和正整数矛盾
所以x-y-z=0
x=y+z
x^2=2(y+z)
x^2=2x
x>0,x=2
y+z=2
则只有y=z=1
所以xy+yz+zx=2+1+2=5
x^3-y^3-z^3-3xyz
=[(x-y)^3-3xy(x-y)]-z^3-3xyz
=[(x-y)^3-z^3]-3xy(x-y-z)
=[(x-y-z)^3-3(x-y)z(x-y-z)]-3xy(x-y-z)
=(x-y-z)^3-3(-xy+yz-zx)(x-y-z)
=(x-y-z)[(x-y-z)^2-3(-xy+yz-zx)]
=(x-y-z)(x^2+y^2+z^2+xy-yz+zx)=0
若x^2+y^2+z^2+xy-yz+zx=0
2x^2+2y^2+2z^2+2xy-2yz+2zx=0
(x^2+2xy+y^2)+(y^2-2yz+z^2)+(z^2+2zx+x^2)=0
所以(x+y)^2+(y-z)^2+(z+x)^2=0
所以只有x+y=0,y-z=0,z+x=0
所以y=z=-x
和正整数矛盾
所以x-y-z=0
x=y+z
x^2=2(y+z)
x^2=2x
x>0,x=2
y+z=2
则只有y=z=1
所以xy+yz+zx=2+1+2=5
已知x,y,z是正整数,且满足x^3-y^3-z^3=3xyz,x^2=2(y+z),求xy+yz+zx的值
已知三个数x,y,z,满足xy/x+y=-2,yz/y+z=4/3,zx/z+x=-4/3,求(xyz)/(xy+yz+
XYZ满足XY/X+Y=-2,YZ/Y+Z=3/4,ZX/Z+X=-4/3,求XYZ/XY+YZ+ZX的值
已知三个数x,y,z满足xy/x+y=-2,yz/y+z=4/3,zx/z+x=-4/3,求xyz/xy+yz+zx的值
已知三个数x,y,z,满足xy/x+y=-2,yz/y+z=4/3,zx/z+x=-4/3,求xyz/xy+yz+zx的
已知实数xyz满足x+y+z=5,xy+yz+zx=3,求z的最大值
已知三个数x,y,z.满足xy/x十y=一2,yz/y十z=4/3,zx/z十x=一4/3则xyz/xy十yz十zx的值
已知x,y,z都是正整数,并且x3-y3-z3=3xyz,x2=2(y-z),求xy+yz+zx
已知xy/x+y=3,yz/y+z=2,zx/z+x=1,求y的值
(x-3y+z)^2+/ 5x-4y+z/=0 且xyz≠0 xy+yz+zx/x^2+y^2+z^2
分式题:xy=x+y,yz=2(y+z),zx=3(z+x),求xyz/(xy+yz+xz)
已知xy:yz:zx=3:2:1,求①x:y:z ②x/yz:y/zx