作业帮 > 综合 > 作业

如图,已知在等腰梯形ABCD中,M,N分别是上下底AD,BC的中点,E,F分别是BM,CM的中点,求证:四边形MENF是

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 17:11:59
如图,已知在等腰梯形ABCD中,M,N分别是上下底AD,BC的中点,E,F分别是BM,CM的中点,求证:四边形MENF是菱形
若P为BC边上任一点,且AD:BC=2:3,梯形ABCD的面积为10,求四边形MEPF的面积
如图,已知在等腰梯形ABCD中,M,N分别是上下底AD,BC的中点,E,F分别是BM,CM的中点,求证:四边形MENF是

 
EN∥CM,EN=1/2CM(三角形中位线定理)
FN∥BM,FN=1/2BM,
所以四边形MENF是平行四边形,
AB=CD,∠A=∠D,AM=DM
所以△ABM≌△DCM,
所以BM=CM,
EN=FN,
所以四边形MENF是菱形.
 
 
设梯形ABCD的高为h,
则S梯形ABCD
=1/2(AD+BC)×h
=1/2(2/3BC+BC)×h
=5/6BC×h=10
则BC×h=12,
所以,
S四边形MEPF
=S△BMC-S△BPE-S△PFC
=1/2BC×h-1/2BP×1/2h-1/2PC×1/2h
=1/2BC×h-1/4h(BP+PC)
=1/2BC×h-1/4BC×h
=1/4×12
=3