高数题一个设f(x)在(0,+∞)上有定义,且f ’(1)=a≠0,又对任意的x,y∈(0,+∞),满足f(xy)=f(
设f(x)是定义在(0,+∞)上的增函数,对任意的正数x,y满足f(xy)=f(x)+f(y)成立,且f(3)=1,
设f(x)是定义在(0,+∞)上的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)+f(y),f(2)=1
设f(x)在(0,+∞)上有定义,且f'(1)=a(a≠0) ,又对任意x,y∈(0,+∞),有f(xy)=f(x)+f
设f(x)是定义在(0,+∞)的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)f(y),f(2)=1,求
定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0.
设f(x)是定义在R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求
设f(x)是定义在R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求
设f (x )定义在R上的函数,且对任意x,y∈R,恒有f(x+y)=f(x)f(y),且x>0时,f(x)>1证明:
已知函数f(x)是定义在(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(4)=1,
已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y) f(2)=1
设定义在R上的函数f(x),对任意x,y∈R,有f(x+y)=f(x)·(y),且当x>0时恒有f(x)>1 ,若f(1
定义在R上的函数f(x)对任意x,y∈R都有f(x+y)+f(x-y)=2f(x)*f(y),且f(0)≠0,判断f(x