有没有一个函数,具有介值性但不连续?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 21:00:58
有没有一个函数,具有介值性但不连续?
如果有,麻烦举出一个函数f(x),具有介值性但不连续
如果没有,请给出介值性蕴涵连续性的证明
更进一步,有没有这样的函数g(x),在定义域D上连续可导,但导函数不连续?
1楼关于介值性的理解有些偏差。介值性指在整个函数的定义域中,任取一个长度非零的区间[a,b],则函数在(a,b)上可取遍f(a)和f(b)之间任意值。
如果有,麻烦举出一个函数f(x),具有介值性但不连续
如果没有,请给出介值性蕴涵连续性的证明
更进一步,有没有这样的函数g(x),在定义域D上连续可导,但导函数不连续?
1楼关于介值性的理解有些偏差。介值性指在整个函数的定义域中,任取一个长度非零的区间[a,b],则函数在(a,b)上可取遍f(a)和f(b)之间任意值。
你实际上有两个问题:
1.介值性(呵呵,你这么称呼未尝不可)与连续性
反例很好找,例如在区间[0,3]上,函数f(x)为:当x≠1及x≠2时,f(x)=x;f(1)=2,f(2)=1.
那么:此函数在[0,3]上满足介值定理,但不连续.
2.此g(x)存在,比如
当x≠0时,g(x)=x^2sin(1/x);g(0)=0.
则此g(x)在x=0处连续可导,但导函数g'(x)在x=0处不连续.
介值定理就是如我所说这样,你可以把高数书翻开看看.如果你自己定义介值性,如你所说的那样,可以举这个反例:x≠0时,f(x)=sin(1/x),f(0)=0,该函数在包含x=0的区间上满足你说的那个介值性,但它在x=0处不连续.
1.介值性(呵呵,你这么称呼未尝不可)与连续性
反例很好找,例如在区间[0,3]上,函数f(x)为:当x≠1及x≠2时,f(x)=x;f(1)=2,f(2)=1.
那么:此函数在[0,3]上满足介值定理,但不连续.
2.此g(x)存在,比如
当x≠0时,g(x)=x^2sin(1/x);g(0)=0.
则此g(x)在x=0处连续可导,但导函数g'(x)在x=0处不连续.
介值定理就是如我所说这样,你可以把高数书翻开看看.如果你自己定义介值性,如你所说的那样,可以举这个反例:x≠0时,f(x)=sin(1/x),f(0)=0,该函数在包含x=0的区间上满足你说的那个介值性,但它在x=0处不连续.
有没有处处极限存在但处处不连续的函数
存在一个函数在某个区间内可导但导数不连续吗
高等数学积分题.图中函数不连续、有振荡间断点、有界但不单调,为何可积?
一个函数的导函数最后求出来为sin(1/x) 原函数是连续的,为什么在x=0处导数存在但不连续?什么叫导函数不连续?都存
一个二元函数具有二阶连续偏导数是什么意思
求举例 一个函数在(a,b)可导,但导数不连续 还有导数为+∞算可导么?
举一个函数连续但方向导数不存在的例子
单调有界函数是否连续请问一个在实数范围内的单调有界函数是否一定要连续!可以不连续吗?比如函数sgn(x)是否属于单调有界
证明是否存在函数,满足:“处处可导,但导函数处处不连续的”
开区间上处处可导但导函数处处不连续的函数是否存在?
高数 证明分段函数连续 其中未知函数告诉你具有有界性 有哪些暗示
f(x)=2x+1,x=0 在X=0处是()A没有极限B有极限但不连续C连续但不可导D可导