作业帮 > 数学 > 作业

∫dx/[a*sin^2(x-π/2)+b*sin(x-π/2)+c]

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 22:11:43
∫dx/[a*sin^2(x-π/2)+b*sin(x-π/2)+c]
∫dx/[a*sin^2(x-π/2)+b*sin(x-π/2)+c]
X从0到2π的积分值a,b,c,为常数
∫dx/[a*sin^2(x-π/2)+b*sin(x-π/2)+c]
LZ好,∫(sin5x)(sin3x)dx
=∫1/2[cos(5x - 3x) - cos(5x + 3x)]dx
=1/2 ∫[cos2x - cos8x]dx
=1/2∫cos2xdx-1/2∫cos8xdx
=1/2*1/2∫cos2xd2x-1/2*1/8∫cos8xd8x
=1/4*sin2x-1/16*sin8x+C
C为任意常数
利用到了:sina*sinb=1/2[cos(a-b)-cos(a+b)]
和积分公式:∫cosxdx=sinx+C 12475希望对你有帮助!