已知,△ABC中∠C=90°,M是AB上的中点,E、D在AC、BC上,且ME⊥MD,求证:AE、ED、DB是直角三角形的
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/19 15:34:57
已知,△ABC中∠C=90°,M是AB上的中点,E、D在AC、BC上,且ME⊥MD,求证:AE、ED、DB是直角三角形的三边.
不知你是否学过正弦定理.
证:
在△AEM中,∠A+∠AEM+∠EMA=180°得∠AEM=180-∠A-∠EMA
同理∠MDB=180-∠B-∠DMB
所以∠AEM+∠MDB=360-(∠A+∠B)-(∠EMA+∠DMB)
=360-90-(180-∠EMD)
=270-(180-90)=180
所以SIN∠AEM=SIN(180-∠AEM)=SIN∠MDB
由于M为AB中点,所以AM=BM
设AM/SIN∠AEM=a,则BM/SIN∠MDB=a
由正弦定理可知
AE/SIN∠AME=ME/SIN∠A=AM/SIN∠AEM=a
BD/SIN∠DMB=DM/SIN∠B=BM/∠MDB=a
所以AE=a*SIN∠AME
ME=a*SIN∠A
BD=a*SIN∠DMB=a*SIN(90-∠AME)=a*COS∠AME
DM=a*SIN∠B=a*SIN(90-∠A)=a*COS∠A
则 AE^2+BD^2=a^2*((SIN∠AME)^2+(COS∠AME)^2)=a^2
ME^2+DM^2=a^2*((SIN∠A)^2+(COS∠A)^2)=a^2
得 AE^2+BD^2=ME^2+DM^2
而由已知条件知△EMD为直角三角形,ED为斜边
根据勾股定理ED^2=ME^2+DM^2
所以DE^2=AE^2+BD^2
即AE、ED、DB是直角三角形的三边
得证!
证:
在△AEM中,∠A+∠AEM+∠EMA=180°得∠AEM=180-∠A-∠EMA
同理∠MDB=180-∠B-∠DMB
所以∠AEM+∠MDB=360-(∠A+∠B)-(∠EMA+∠DMB)
=360-90-(180-∠EMD)
=270-(180-90)=180
所以SIN∠AEM=SIN(180-∠AEM)=SIN∠MDB
由于M为AB中点,所以AM=BM
设AM/SIN∠AEM=a,则BM/SIN∠MDB=a
由正弦定理可知
AE/SIN∠AME=ME/SIN∠A=AM/SIN∠AEM=a
BD/SIN∠DMB=DM/SIN∠B=BM/∠MDB=a
所以AE=a*SIN∠AME
ME=a*SIN∠A
BD=a*SIN∠DMB=a*SIN(90-∠AME)=a*COS∠AME
DM=a*SIN∠B=a*SIN(90-∠A)=a*COS∠A
则 AE^2+BD^2=a^2*((SIN∠AME)^2+(COS∠AME)^2)=a^2
ME^2+DM^2=a^2*((SIN∠A)^2+(COS∠A)^2)=a^2
得 AE^2+BD^2=ME^2+DM^2
而由已知条件知△EMD为直角三角形,ED为斜边
根据勾股定理ED^2=ME^2+DM^2
所以DE^2=AE^2+BD^2
即AE、ED、DB是直角三角形的三边
得证!
如图 在等腰Rt△ABC中 ∠C=90°,AE=BC,点D,E分别在BC和AC上,且BD=CE,M是AB的中点,则△MD
如图 在△abc中,∠c=90°,点d是bc边上的一点,md⊥ab,且md=ac,过点m作me∥bc交ab于点e.求证:
如图,在△ABC中,∠C=90°,点D是AB边上的一点,MD⊥AB,且MD=AC,过点M作ME//BC交AB于点E.求证
已知,如图在△ABC中,∠C=90°,AC=BC,D是AB的中点,点E在AC上,点F在BC上,且AE=CF.求证:DE=
需要加辅助线在△ABC中,∠C=90°,AC=BC,D是斜边AB的中点,点E、F分别在边AC、BC上,且ED⊥DF,求证
已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是AB的中点,E、F分别在AC、BC上,且ED⊥FD.求证
已知:如图,△ABC中,∠ACB=90°AC=BC,D是AB的中点,点E在AC上,点F在BC上,且AE=CF 求证(1)
已知,如图,△ABC中,∠ACB=90°,AC=BC,D是AB的中点,点E在AC上,点F在BC上,且AE=CF.求证:(
已知:如图,在△ABC中,∩ACB=90°,AC=BC,D是AB的中点,点E在AC上,点F在BC上,且AE=CF.求证D
已知:△ABC中,D是AB上一点,且AC=DB,E为ADF的中点,∠ADC=∠ACD,求证:CE=½BC
如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+
如图,在Rt△ABC中,∠C=90°,D是AB的中点,E、F分别在AC和BC上,且DE⊥DF.求证:EF方=AE方+BF