作业帮 > 数学 > 作业

还是那道题,里面的解法看不太懂

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 22:39:09
还是那道题,里面的解法看不太懂
已知f(x)=x^2 lnx.
(1)证明:对任意的t>0,存在唯一的s,使t=f(x).
(2)证明:当0<x≤1时,f(x)≤0.
设t>0,令h(x)=f(x)-t,x∈[1,+∞).
由(1)知,h(x)在区间(1,+∞)内单调递增.
h(1)=-t<0,h(et)=e2tln et-t=t(e2t-1)>0.
故存在唯一的s∈(1,+∞),使得t=f(s)成立.
里面的“令h(x)=f(x)-t,x∈[1,+∞).”是什么用的?为什么还要减去t?
不是可以由原式f'(x)得到f(x)在[1,+∞)为单调递增,
又f(x)=t >0,不就意味着f(x)在[1,+∞)的每一个x值对应都有一个且唯一的y值吗?
为什么答案还要再这样“多此一举”?
还是那道题,里面的解法看不太懂
我们要证明有且只有一点S,使t=f(s);
如果我们构造函数g(x)=f(x)-t,那么我们可以将问题转化为证明g(x)在定义域内有且只有一个零点
在[0,1]内,g(x)恒小于0,那么就不用看其单调性,在(1,+∞)时可知g(x)时单调递增的,
那么只需两个特定点x1,x2的积,即g(x1)g(x2)