如图,四边形ABCD是菱形,AE⊥BC交CB的延长线于点E,AF⊥CD交CD的延长线于点F.求证:AE=AF.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 23:38:33
如图,四边形ABCD是菱形,AE⊥BC交CB的延长线于点E,AF⊥CD交CD的延长线于点F.求证:AE=AF.
证明:方法一:∵四边形ABCD是菱形,
∴AB=AD,∠ABC=∠ADC,
∴180°-∠ABC=180°-∠ADC,
即∠ABE=∠ADF,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
在△ABE和△ADF中,
∠ABE=∠ADF
∠AEB=∠AFD=90°
AB=AD,
∴△ABE≌△ADF(AAS),
∴AE=AF.
方法二:∵四边形ABCD是菱形,
∴BC=CD,
∵AE⊥BC,AF⊥CD,
∴菱形ABCD的面积=BC•AE=CD•AF,
∴AE=AF.
∴AB=AD,∠ABC=∠ADC,
∴180°-∠ABC=180°-∠ADC,
即∠ABE=∠ADF,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
在△ABE和△ADF中,
∠ABE=∠ADF
∠AEB=∠AFD=90°
AB=AD,
∴△ABE≌△ADF(AAS),
∴AE=AF.
方法二:∵四边形ABCD是菱形,
∴BC=CD,
∵AE⊥BC,AF⊥CD,
∴菱形ABCD的面积=BC•AE=CD•AF,
∴AE=AF.
如图,四边形ABCD是平行四边形,AE⊥CB,交CB的延长线于点E,AF⊥CD,交CD的延长线于点F 看补充!
如图,四边形ABCD是平行四边形,AE⊥CB,交CB的延长线与点E,AF⊥CD,交CD的延长线于点F
如图,四边形ABCD是平行四边形,AE⊥CB交CB的延长线于点E,AF⊥CD交CD的延长线于点F,∠EAF=130°,求
如图在平行四边形abcd中,ae垂直bc交cb的延长线于点e,af垂直cd交cd的延长线于点f,ab+bc+cd+da=
点E是正方形ABCD的边CD上的一点AF垂直AE交CB的延长线于F求证DE=BF
如图,已知四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于E,AF⊥CD交CD的延长线于F
如图,菱形ABCD中,AB=4,E为BC中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD于点G.
在正方形ABCD中,F是BC上一点,EA⊥AF,AE交CD的延长线于点E,联结EF交AD于点G,求证:BF*FC=DG*
如图10,在菱形ABCD中,AB=4,E为BC的中点,AE⊥BC,AF⊥CD于点F,CG//AE,CG交AF于点H,交A
如图,点E是正方形ABCD中边CD上的一点,F是CB延长线的一点,DE=BF求证;AE⊥AF
如图,在四边形ABCD中,AD平行于BC,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证
四边形ABCD中,AB=AD CA平分∠BCD AE⊥BC于点E AF⊥CD 交AD延长线于点F 图中有无和△ABE的三