数学竞赛不等式问题x、y、z是三角形三边长,求证:(x+y-z)(y+z-x)(z+x-y)≤xyz;
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 07:17:58
数学竞赛不等式问题
x、y、z是三角形三边长,
求证:(x+y-z)(y+z-x)(z+x-y)≤xyz;
x、y、z是三角形三边长,
求证:(x+y-z)(y+z-x)(z+x-y)≤xyz;
证明:
(x+y-z)(y+z-x) = [y+(x-z)][y-(x-z)]=y^2-(x-z)^2≤y^2 (1)
(x+y-z)(z+x-y) = [x+(y-z)][x-(y-z)]=x^2-(y-z)^2≤x^2 (2)
(y+z-x)(z+x-y)= [z+(y-x)][z-(y-x)]=z^2-(y-x)^2≤z^2 (3)
(1),(2),(3)相乘得
[(x+y-z)(y+z-x)(z+x-y)]^2≤(xyz)^2,
所以(x+y-z)(y+z-x)(z+x-y)≤xyz
(x+y-z)(y+z-x) = [y+(x-z)][y-(x-z)]=y^2-(x-z)^2≤y^2 (1)
(x+y-z)(z+x-y) = [x+(y-z)][x-(y-z)]=x^2-(y-z)^2≤x^2 (2)
(y+z-x)(z+x-y)= [z+(y-x)][z-(y-x)]=z^2-(y-x)^2≤z^2 (3)
(1),(2),(3)相乘得
[(x+y-z)(y+z-x)(z+x-y)]^2≤(xyz)^2,
所以(x+y-z)(y+z-x)(z+x-y)≤xyz
已知x+y-z/z=x-y+z/y=-x+y+z/x,且xyz不等于0,求分式[(x+y)(x+z)(y+z)]/xyz
因式分解(Y+Z)(X+Z)+(X+Y)+XYZ
因式分解:(y+z)(x+z)(x+y)+xyz
因式分解:(x+y)(y+z)(z+x)+xyz
数学 多项式(x+y-z)(x-y+z)-(y+z-x)(z-x-y)公因式
xyz>0则|x|/x+x/|y|+|z|/z
若z分之x+y+z=y分之x-y+z=x分之-x+y+z,求xyz分之(x+y)(y+z)(z+x)
(x+y-z)/z=(y+z-x)/x=(z+x-y)/y 求(x+y)(y+z)(z+x)/xyz
已知:(x+y-z)/z=(x-y+z)/y+(y+z-x)/x,且xyz≠0,求代数式[(x+y)(y+z)(x+z)
x平方(x+y+z)+xyz过程
因式分解 (x+y+z)^2+yz(y+z)+xyz
x+y+z=1 求xyz/(x+y)(y+z)(z+x)的最大值