作业帮 > 数学 > 作业

已知|x|≤1,|y|≤1,设M=|x+y|+|y+1|+|2y-x-4|,求M的最大值与最小值.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 17:19:29
已知|x|≤1,|y|≤1,设M=|x+y|+|y+1|+|2y-x-4|,求M的最大值与最小值.
已知|x|≤1,|y|≤1,设M=|x+y|+|y+1|+|2y-x-4|,求M的最大值与最小值.
∵|x|≤1,|y|≤1,
∴-1≤x≤1,-1≤y≤1,
∴y+1≥0,2y-x-4<0,
∴|y+1|=y+1,|2y-x-4|=4+x-2y,
当x+y≥0时,
|x+y|=x+y,
原式=2x+5,
x=-1时,M=3;x=1时,M=7;
当x+y<0时,
|x+y|=-x-y,
原式=5-2y,
当y=1时,M=3,y=-1时,M=7.
∴M的最大值为7,最小值为3.