已知集合M={x|f(x)-x=0,x∈R}与集合N={x|f[f(x)]-x=0,x∈R},其中f(x)是一个二次项系
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 08:18:29
已知集合M={x|f(x)-x=0,x∈R}与集合N={x|f[f(x)]-x=0,x∈R},其中f(x)是一个二次项系数为1的二次函数
(1)判断M与N的关系
(2)若M是单元素集合,求证M=N
(3)若M={2,5},求集合N
(1)判断M与N的关系
(2)若M是单元素集合,求证M=N
(3)若M={2,5},求集合N
不妨设 f(x) = x^2+bx+c;
在 M 中,f(x) = x^2+bx+c = x ……(1);
再看 N:f[f(x)] = (x^2+bx+c)^2 + b*(x^2+bx+c) + c …… (2)
假设 x ∈ M ,则 (2)式可化为:f[f(x)] = x^2+bx+c = x
即 x ∈ N ,所以 M ⊆ N.
但是反过来是不成立的,这很显然,因为 N 相当于是解一个 一元四次方程,可能有四个不同的解,而 M 再多只有两个解.
(2) 用反证法:
假设有 N 还存在至少另外一个元素满足条件,
不妨设 N = { x1,x2 },M={ x1 }.
( 注:下面的符号 != 表示 “不等于”)
对于 f[f(x)] - x = (x^2+bx+c)^2 + b*(x^2+bx+c) + c - x = 0,
因为 f(x2) = t != x2 ,即 f[f(x2)] - x2 = t^2 + b*t + c - x2 = 0 成立.
对于 f(t) = t^2 + b*t + c,由 M 是单元素集合可知,t = x2 必然成立,这与假设矛盾,故有 M=N.
在 M 中,f(x) = x^2+bx+c = x ……(1);
再看 N:f[f(x)] = (x^2+bx+c)^2 + b*(x^2+bx+c) + c …… (2)
假设 x ∈ M ,则 (2)式可化为:f[f(x)] = x^2+bx+c = x
即 x ∈ N ,所以 M ⊆ N.
但是反过来是不成立的,这很显然,因为 N 相当于是解一个 一元四次方程,可能有四个不同的解,而 M 再多只有两个解.
(2) 用反证法:
假设有 N 还存在至少另外一个元素满足条件,
不妨设 N = { x1,x2 },M={ x1 }.
( 注:下面的符号 != 表示 “不等于”)
对于 f[f(x)] - x = (x^2+bx+c)^2 + b*(x^2+bx+c) + c - x = 0,
因为 f(x2) = t != x2 ,即 f[f(x2)] - x2 = t^2 + b*t + c - x2 = 0 成立.
对于 f(t) = t^2 + b*t + c,由 M 是单元素集合可知,t = x2 必然成立,这与假设矛盾,故有 M=N.
设f(x)是定义在R上的函数集合M={x|f(x)=x},N={x|f(f(x))=x}
已知二次函数f(x)满足f(x+1)-f(x)=2x+1 (x∈R),且f(0)=1,判断f(x)的奇偶性
设全集U=R,集合M={x|f(x)=0},N={x|g(x)=0}
g(x)=f(-x)+f(x),x∈R
已知全集I=R,若函数f(x)=x²-3x+2,集合M={x|f(x)≤0},N={x|f′(x)<0},则M
已知二次函数f(x)对任意x∈R,都有f(1-x)=f(1+x)成立.设f(x)二次项系数为m(m≠0),当x∈[0,Π
函数y=f(x)的定义域为A,则集合M={(x,y)|y=f(x),x∈A}与集合N={(x,y)|x=a,a∈R}的公
已知函数f(x)满足f(x+y)+f(x-y)=2f(x)f(y)(x∈R,y∈R),且f(0)≠1.
已知函数f(x)=x2+x+q,集合A={x|f(x)=0,x属于R},B={x|f(f(x))=0,x属于R}若B为单
已知二次函数f(x)满足f(0)=0,且对任意x∈R总有f(x+1)=f(x)+x+1,g(x)=2f(-x)+x,求f
已知函数f(x)=x^2+2x-3,集合M={(x,y)|f(x)+f(y)≤0},集合N={(x,y)|f(x)-f(
集合与函数测试题{x x>=0 {-x x>=0已知f(x)= g(x)= 求f[g(x) {-x x