作业帮 > 综合 > 作业

任意三角形ABC,其高AD交BC于D,AB+DC=AC+DB,求证,AB=AC

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 19:33:20
任意三角形ABC,其高AD交BC于D,AB+DC=AC+DB,求证,AB=AC
我才注册,没多少分,请谅解
任意三角形ABC,其高AD交BC于D,AB+DC=AC+DB,求证,AB=AC
因为 AB^2=AD^2+BD^2, AC^2=AD^2+CD^2
所以 AB^2-AC^2 = BD^2-CD^2
所以 (AB+AC)*(AB-AC)=(BD+CD)*(BD-CD)
因为 AB+DC=AC+DB
所以 AB-AC=BD-CD
所以 (AB+AC)*(AB-AC)=(BD+CD)*(AB-AC)
所以 (AB-AC)*(AB+AC-BD-CD)=0
因为 AB>BD , AC>CD
所以 AB+AC-BD-CD>0
所以 AB-AC=0
所以 AB=AC