向量共线定理证明:如果存在不全为0的实数s,t,使得sa+tb=0,那么a与b是共线向量;如果a与b不共线,且sa+tb
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 09:26:08
向量共线定理
证明:如果存在不全为0的实数s,t,使得sa+tb=0,那么a与b是共线向量;如果a与b不共线,且sa+tb=0,那么s=t=o
证明:如果存在不全为0的实数s,t,使得sa+tb=0,那么a与b是共线向量;如果a与b不共线,且sa+tb=0,那么s=t=o
很容易
题目有点漏洞,a和b应该是非零向量
因为sa+tb=0,s,t不全为零,若s,t有一个为零,不妨设s=0,t≠0,则tb=0,所以b=0
显然零向量跟任何向量都共线;
若s,t都不为零,则由a/b=-t/s知a,b一定共线
又a,b不共线,sa=-tb,若s,t均非零,则a‖b,矛盾,所以s,t至少有一个为零,不妨设s=0,则tb=0,由于b≠0,所以t=0,因此有s=t=0
证毕!
题目有点漏洞,a和b应该是非零向量
因为sa+tb=0,s,t不全为零,若s,t有一个为零,不妨设s=0,t≠0,则tb=0,所以b=0
显然零向量跟任何向量都共线;
若s,t都不为零,则由a/b=-t/s知a,b一定共线
又a,b不共线,sa=-tb,若s,t均非零,则a‖b,矛盾,所以s,t至少有一个为零,不妨设s=0,则tb=0,由于b≠0,所以t=0,因此有s=t=0
证毕!
共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa.
向量共线定理的证明中先证明了:若向量a(向量a的模不为0)与向量b共线,则存在实数λ使得b=λa,证法如下
设a向量 ,b向量不共线,如果a向量,tb向量,1/3(a向量+b向量),终点在同一条直线上,则t=?
如果向量a是任意向量 向量b与向量a共线 那么向量b=
设a,b是两个不共线且起点相同的非零向量,如果a,tb,1/3(a+b)三向量终点在同一条直线上,则t=???
对于向量a (a不等于0)、向量b,如果有一个实数入,使得b=入b,那么由向量数乘的定义知a向量与b向量共线 请问为什么
已知a,b是不共线向量,且a-3b与ka+b是共线向量,那么K=
向量证明三点共线若a、b是两个不共线的非零向量(t属于R),a、tb、1/3(a+b)三向量的起点相同,则t为何值时,三
共面向量定理如果两个向量a.b不共线,则向量P与向量a.b共面的充要条件是存在有序实数对(x.y),使 p=xa+yb,
(1/2)有两个不共线向量a,b (1)OA=a,OB=tb,OC=(a+b)/3,那么当实数t为何值时,ABC三点共线
若a,b是两个不共线的非零向量(t属于R).若a与b起点相同,t为何值时,a,tb,1/3(a+b)三向量的终点在一直线
设a,b是两个不共线向量,若a与b起点相同,t∈R,t为何值时a,tb,1/3(a+b)三向量的终点在一条直线上.