作业帮 > 综合 > 作业

复变函数与积分变换证明题:若f(z在区域D内解析,且|f(z)|在区域D内为常值,试证明f(z)在

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 11:21:41
复变函数与积分变换证明题:若f(z在区域D内解析,且|f(z)|在区域D内为常值,试证明f(z)在
证明f(z)在区域D内为常值函数.
复变函数与积分变换证明题:若f(z在区域D内解析,且|f(z)|在区域D内为常值,试证明f(z)在
证明:设f(z)=u(x,y)+iv(x,y)
(1)若f(z)恒为0,则结论显然成立.
(2)若f(z)不恒为0
由f(z)解析得:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x C-R条件
|f(z)|=u^2+v^2为非零常数,因此该函数对x和y的偏导数均为0,得:
2u∂u/∂x+2v∂v/∂x=0,即u∂u/∂x+v∂v/∂x=0 (1)
2u∂u/∂y+2v∂v/∂y=0,即u∂u/∂y+v∂v/∂y=0 (2)
将C-R条件代入(2)两式得:
-u∂v/∂x+v∂u/∂x=0 (3)
联立(1)(3)两式,将∂u/∂x,∂v/∂x看作未知数,u,v看作系数,该方程组的系数行列式为
u v
v -u
=-u^2-v^2≠0
因为系数行列式非0,因此方程组只有零解,得:∂u/∂x=0,∂v/∂x=0
再联合C-R条件知,∂u/∂y=0,∂v/∂y=0
因此,u,v与x,y均无关,则u,v均为常数,所以f(z)=u(x,y)+iv(x,y)为常数.

【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
再问: 你能帮我解答我提的其他复变问题么?就在我的提问问题里,我把能给你的分都给你。我有点着急,,,
再答: 复变有很多东西都忘了,我可以看看,你把链接用百度hi发给我。 另:请采纳此题。