证明:函数f(x)=-2x2+1是偶函数,且在[0,+∞)上是减少的.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 00:06:31
证明:函数f(x)=-2x2+1是偶函数,且在[0,+∞)上是减少的.
证明:函数f(x)的定义域为R,
对于任意的x∈R,都有f(-x)=-2(-x)2+1=-2x2+1=f(x),
∴f(x)是偶函数;
在区间[0,+∞)上任取x1,x2,且x1<x2,则有
f(x1)-f(x2)=(−2x12+1)−(−2x22+1)=2(x22−x12)=2(x2+x1)(x2-x1),
∵x1,x2∈[0,+∞),x1<x2,∴x2-x1>0,x1+x2>0,
即2(x2-x1)•(x1+x2)>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
所以f(x)在[0,+∞)上是减少的.
对于任意的x∈R,都有f(-x)=-2(-x)2+1=-2x2+1=f(x),
∴f(x)是偶函数;
在区间[0,+∞)上任取x1,x2,且x1<x2,则有
f(x1)-f(x2)=(−2x12+1)−(−2x22+1)=2(x22−x12)=2(x2+x1)(x2-x1),
∵x1,x2∈[0,+∞),x1<x2,∴x2-x1>0,x1+x2>0,
即2(x2-x1)•(x1+x2)>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
所以f(x)在[0,+∞)上是减少的.
证明:函数f(x)=x2+1是偶函数,且在[0,+∞)上是增加的.
证明函数Y=f(x)=x2+1是偶函数,且在(0,+00)上是增加的
函数f(x)是R上的偶函数,且当想x>0时,函数的解析式为f(x)=2/x-1 用定义证明f(x)在(0,+∞)上是减函
已知幂函数f(x)=x^(1/2)(m-4) (m∈N)是偶函数,且在(0,正无穷大)上是减少的,求f(x)
已知y=f(x)是偶函数,且在[0,+∞)上是减函数,则f(1-x2)是增函数的区间是( )
几道数学题:证明:函数f(x)=x²+1是偶函数,且在[0,+∞)上时增加的.
已知函数f(x)是定义域在R上的偶函数,且在区间(-∞,0)上单调递减,求满足f(x2+2x+3)>f(-x2-4x-5
f(x)在R上是偶函数,(-∞,0)是减函数,x10,且|x1|>|x2|,求f(x1)与f(x2)
已知函数f(x)=2x+2-x.(1)证明f(x)是偶函数;(2)判断f(x)在(0,+∞)上的单调性并加以证明.
已知函数f(x)=log2(1+x^2) (1)证明函数f(x)是偶函数 (2)证明函数f(x)在区间(0,+∞)上是增
已知函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,解不等式f(x)<0
若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是增函数,且f(2)=0,则使得f(x)