求下面两个极限lim x[(x^2+1)^(1/2)-x] x趋近于+∞;lim (tanx-sinx)/x^3 x趋近
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:40:39
求下面两个极限
lim x[(x^2+1)^(1/2)-x] x趋近于+∞;
lim (tanx-sinx)/x^3 x趋近于0;
lim x[(x^2+1)^(1/2)-x] x趋近于+∞;
lim (tanx-sinx)/x^3 x趋近于0;
lim x[(x^2+1)^(1/2)-x]=lim x/ [(x^2+1)^(1/2)+x]
用洛必达法则=lim 1/[x/(x^2+1)^(1/2)+1]=
lim (x^2+1)^(1/2)/[(x^2+1)^(1/2)+x]=1-limx/ [(x^2+1)^(1/2)+x]
得到2lim x/ [(x^2+1)^(1/2)+x]=1
即 lim x/ [(x^2+1)^(1/2)+x]=1/2
lim x[(x^2+1)^(1/2)-x]=1/2
lim (tanx-sinx)/x^3=lim sinx(1-cosx)/(x^3*cosx)
=lim sinx*2[sin(x/2)]^2/(x^3*cosx)=
lim sinx/x*lim (sin(x/2))^2/(x/2)^2*lim1/2cosx=1/2
用洛必达法则=lim 1/[x/(x^2+1)^(1/2)+1]=
lim (x^2+1)^(1/2)/[(x^2+1)^(1/2)+x]=1-limx/ [(x^2+1)^(1/2)+x]
得到2lim x/ [(x^2+1)^(1/2)+x]=1
即 lim x/ [(x^2+1)^(1/2)+x]=1/2
lim x[(x^2+1)^(1/2)-x]=1/2
lim (tanx-sinx)/x^3=lim sinx(1-cosx)/(x^3*cosx)
=lim sinx*2[sin(x/2)]^2/(x^3*cosx)=
lim sinx/x*lim (sin(x/2))^2/(x/2)^2*lim1/2cosx=1/2
求极限:lim(sinx)^tanx (x趋近于pai/2)
lim趋近于0((3+2sinx)*x-3*x)/((tanx)*2)求极限
lim趋近于0((3+2sinx)*x)/((tanx)*2)求极限
当x趋近于0时,求极限lim((1+2tanx)^(1/x)),
lim tanx-sinx/sin^2x x趋近于0,x的极限
求lim x趋近于0 sinx^3 tanx/(1-cosx^2)
求极限 lim x趋近于0 [e^(tanx-x) - 1]/(tanx-x)
lim( (sinx-x)/( (x-e^x+1)x ) ),x趋近于0,求极限?
求极限lim(x趋近于0)(根号下(2+tanx)-根号下(2+sinx))/x^3
lim[tan(tanx)-sin(sinx)]/x³,x趋近于0的极限是1,
lim sinx^x(x趋近于0+)求极限
lim sinx^x(x趋近于0+) 求极限