作业帮 > 数学 > 作业

如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 14:00:03
如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.

(1)试说明梯形ABCD是等腰梯形;
(2)若AD=1,BC=3,DC=
2
如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.
(1)证明:∵EF=EC,
∴∠EFC=∠ECF,
∵EF∥AB,
∴∠B=∠EFC,
∴∠B=∠ECF,
∴梯形ABCD是等腰梯形;
(2)△DCF是等腰直角三角形,
证明:∵DE=EC,EF=EC,
∴EF=
1
2CD,
∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),
∵梯形ABCD是等腰梯形,且AD=1,BC=3,
∴CF=
1
2(BC-AD)=1,
∵DC=
2,
∴由勾股定理得:DF=1,
∴△DCF是等腰直角三角形;
(3)共四种情况:
∵DF⊥BC,
∴当PF=CF时,△PCD是等腰三角形,
即PF=1,
∴PB=1;
当P与F重合时,△PCD是等腰三角形,
∴PB=2;
当PC=CD=
2(P在点C的左侧)时,△PCD是等腰三角形,
∴PB=3-
2;
当PC=CD=
2(P在点C的右侧)时,△PCD是等腰三角形,
∴PB=3+
2.
故共四种情况:PB=1,PB=2,PB=3-
2,PB=3+
2.(每个1分)