AD是RT△ABC斜边BC上的高,点E在CB的延长线上,且∠EAB=∠BAD,求证AE^2 *DC=EC^2 *BD
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 09:38:40
AD是RT△ABC斜边BC上的高,点E在CB的延长线上,且∠EAB=∠BAD,求证AE^2 *DC=EC^2 *BD
∵∠BAD+∠ABD=90°
∠ACD+∠ABD=90°
∴∠BAD=∠ACD
且∠BDA=∠ADC=90°
∴△BAD∽△ACD
则BA/AC=BD/AD=AD/CD
又∵∠EAB=∠BAD
∴∠EAB=∠ECA
且∠AEB=∠CEA
∴△AEB∽△CEA
则AE/CE=AB/CA
即AE/CE=AB/CA=BD/AD=AD/CD
∴(AE/CE)²=(BD/AD)·(AD/CD)
即AE²/CE²=BD/CD
则AE²·CD=CE²·BD
∠ACD+∠ABD=90°
∴∠BAD=∠ACD
且∠BDA=∠ADC=90°
∴△BAD∽△ACD
则BA/AC=BD/AD=AD/CD
又∵∠EAB=∠BAD
∴∠EAB=∠ECA
且∠AEB=∠CEA
∴△AEB∽△CEA
则AE/CE=AB/CA
即AE/CE=AB/CA=BD/AD=AD/CD
∴(AE/CE)²=(BD/AD)·(AD/CD)
即AE²/CE²=BD/CD
则AE²·CD=CE²·BD
在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上的一点,点E在BC上,且AE=CF.求证Rt△ABE≡Rt△
如图,在△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,AE交CB的延长线于点E,〔1〕求证:△EAB~△EC
如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上的一点,点E在BC上,且AE=CF 求证:Rt△ABE
如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与
等腰三角形abc中,ac=bc,点e在斜边ab上,且ae=2eb,点d是cb的中点,求证:ad垂直于ce
如图,△ABC中,AC=BC,AD是CB上的中线,点E在AB,AE=2BE.延长ED到F,使EF=EC,联结CF 求证C
在等边三角形ABC中,点D、E分别是AB、BC延长线上的点,且BD=CE,直线CD与AE相交于点F 求证:AD平方=DC
1.在Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点
已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F
△ABC是等边三角形,D是AB延长线上的一点,E在CB的延长线上,且DE=DC 求证:AD=BE
在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE
等腰直角三角形 在等腰Rt△ABC中,∠ACB=90,AC=BC,点E在斜边AB上,且AE=2EB,点D是CB的中点,求