作业帮 > 综合 > 作业

设函数F(x)=6x^3+3(a+2)x^2+2ax 若f(x) 的两个极值点为x1 x2 且x1x2=1 求实数a的值

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/07 04:35:40
设函数F(x)=6x^3+3(a+2)x^2+2ax 若f(x) 的两个极值点为x1 x2 且x1x2=1 求实数a的值
是否存在实数a 使f(x)是R上的单调函数
设函数F(x)=6x^3+3(a+2)x^2+2ax 若f(x) 的两个极值点为x1 x2 且x1x2=1 求实数a的值
没追加分,不给你算,但给你讲思路:
要两个极点就是要f'(x)=0;
即18X^2+6(a+2)X+2a=0;这个初中的二元一次方程,很好解的.X1,X2为两个含a的代数式.
套上X1x2=1这个条件,很容易解出a来.可能也是一个二元一次方程,有解的话就存在,没有就不存在.
要使f(x)在区间R单调则f'(x)>=0或f'(x)