已知x2+4y2已知x2+4y2=4x.,x2+y2的最大值为 ,最小值为
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 00:22:03
已知x2+4y2已知x2+4y2=4x.,x2+y2的最大值为 ,最小值为
已知x2+4y2=4x.,x2+y2的最大值为 ,最小值为
这个方法我们还没教过呢、不懂的、
已知x2+4y2=4x.,x2+y2的最大值为 ,最小值为
这个方法我们还没教过呢、不懂的、
x^2+4y^2=4x
则(x-2)^2+4y^2=4
即((x-2)/2)^2+y^2=1
用参数方程来做
令(x-2)/2=cosθ,y=sinθ
则x=2cosθ+2,y=sinθ
所以x^2+y^2=(2cosθ+2)^2+(sinθ)^2
=4(cosθ)^2+8cosθ+4+(sinθ)^2
=3(cosθ)^2+8cosθ+5
=3(cosθ+4/3)^2-1/3
因为-1≤cosθ≤1
所以1/3≤cosθ+4/3≤7/3
故0≤x^2+y^2≤16
即x^2+y^2的最大值为16,最小值为0
这是另一初等方法:
x^2+4y^2=4x
y^2=(4x-x^2)/4
因为y^2≥0,所以(4x-x^2)/4≥0
所以0≤x≤4
所以x^2+y^2=x^2+(4x-x^2)/4=3x^2/4+x
=(3/4)*(x^2+4x/3)
=(3/4)*(x+2/3)^2-1/3
由以上0≤x≤4
那么2/3≤x+2/3≤14/3
那么4/9≤(x+2/3)^2≤196/9
那么0≤(3/4)*(x+2/3)^2-1/3≤16
即0≤x^2+y^2≤16
则(x-2)^2+4y^2=4
即((x-2)/2)^2+y^2=1
用参数方程来做
令(x-2)/2=cosθ,y=sinθ
则x=2cosθ+2,y=sinθ
所以x^2+y^2=(2cosθ+2)^2+(sinθ)^2
=4(cosθ)^2+8cosθ+4+(sinθ)^2
=3(cosθ)^2+8cosθ+5
=3(cosθ+4/3)^2-1/3
因为-1≤cosθ≤1
所以1/3≤cosθ+4/3≤7/3
故0≤x^2+y^2≤16
即x^2+y^2的最大值为16,最小值为0
这是另一初等方法:
x^2+4y^2=4x
y^2=(4x-x^2)/4
因为y^2≥0,所以(4x-x^2)/4≥0
所以0≤x≤4
所以x^2+y^2=x^2+(4x-x^2)/4=3x^2/4+x
=(3/4)*(x^2+4x/3)
=(3/4)*(x+2/3)^2-1/3
由以上0≤x≤4
那么2/3≤x+2/3≤14/3
那么4/9≤(x+2/3)^2≤196/9
那么0≤(3/4)*(x+2/3)^2-1/3≤16
即0≤x^2+y^2≤16
已知实数X,Y满足方程X2+Y2-4X+1=0.求X2+Y2的最大值和最小值
已知方程x2 +y2+4x-2y-4=0,求x2 +y2的最大值
已知实数x,y满足方程x2+y2-4x+1=0求y-x的最大值与最小值;求x2+y2的最大值与最小值.
已知实数满足x2+y2=4,那么3y-4x的最大值为( )
已知x2+y2=10,则3x+4y的最大值为( )
已知,x和y是任意实数,M是代数式x2+2xy+y2,x2-2xy+y2,x2+4x+4中的最大值,求M的最小值
已知实数x,y满足1≤x2+y2≤4,求f(x,y)=x2+xy+y2的最大值和最小值
已知实数x,y满足x2+y2-2x+4y=0,则x2+y2的最小值是
已知x,y为实数,求代数式x2+y2+2x-4y+7的最小值
已知x.y为实数,求代数式X2+Y2+2X-4Y+13的最小值
已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是( )
2010.09.已知x、y为实数,且(x2+y2)(x2+y2+1)=20,求x2+y2的值