作业帮 > 数学 > 作业

为什么n阶行列式的元素都是1和-1,那么行列式的值是偶数

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 10:12:34
为什么n阶行列式的元素都是1和-1,那么行列式的值是偶数
为什么n阶行列式的元素都是1和-1,那么行列式的值是偶数
数学归纳法:
设n阶行列式为A,元素皆为正负1.
n=1时不算在内.
n=2时,显然成立.
假设n=k时成立.
则n=k+1时,行列式A按照第一行展开:
A=a11*A11*(-1)^(1+1)+...+a1i*A1i*(-1)^(1+i)+...+a1n*A1n*(-1)^(n+1)
根据数学归纳法,上式中所有的A1i,也就是A中的元素a1i在行列式中的余子式,这些A1i都是元素为正负1的阶数>=2的行列式.根据归纳假设,A1i都为偶数.而这些偶数的组合,A,也必然为偶数.
根据归纳原理,所有元素为正负1的行列式,值都为偶数.
证明完毕.