y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 05:55:59
y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
y=(1+1/x)^x,
即y=e^ [x*ln(1+1/x)],
所以
y'= e^ [x*ln(1+1/x)] * [x*ln(1+1/x)] '
而
[x*ln(1+1/x)] '
= x' * ln(1+1/x) + x* [ln(1+1/x)] '
= ln(1+1/x) + x* [-(1/x^2) / (1+1/x)]
= ln(1+1/x) - 1/(x+1)
故
y'= e^ [x*ln(1+1/x)] * [x*ln(1+1/x)] '
= e^ [x*ln(1+1/x)] * [ln(1+1/x) - 1/(x+1)]
= (1+1/x)^x * [ln(1+1/x) - 1/(x+1)]
即y=e^ [x*ln(1+1/x)],
所以
y'= e^ [x*ln(1+1/x)] * [x*ln(1+1/x)] '
而
[x*ln(1+1/x)] '
= x' * ln(1+1/x) + x* [ln(1+1/x)] '
= ln(1+1/x) + x* [-(1/x^2) / (1+1/x)]
= ln(1+1/x) - 1/(x+1)
故
y'= e^ [x*ln(1+1/x)] * [x*ln(1+1/x)] '
= e^ [x*ln(1+1/x)] * [ln(1+1/x) - 1/(x+1)]
= (1+1/x)^x * [ln(1+1/x) - 1/(x+1)]
y=(1+x)^x的求导
求导y=(1+1/x)的x次方
y=x^1/x次方怎么求导
设3的x次方等于4y等于36.求x分之2加y分之1的值
y是x的函数,e的x+y次方对x求导,为什么等于e的x+y次方乘以(1+y')
若X大于1,y大于0,且满足xy等于x的y次方,x除以y等于x的3y次方,求X加Y
y= arttane的根号下 x-1次方,求导.
y=e的1-x次方,求导.
y=(2x+1)的sinx次方 怎么样求导?.
(x+y)(x-y)-(x的2次方-3xy),其中x等于2,y等于-2分之1
已知,2的x次方等于3 2的y次方等于4.求8乗以y加1分之x加y加1
4道高数求导求解:y=arccos(1-2x) y=lncot(x/2) y=e的负3分之x次方×sin3x y=cos