作业帮 > 数学 > 作业

y=(1+1/x)^x (y等于1加x分之1的x次方)求导!

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 05:55:59
y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
y=(1+1/x)^x (y等于1加x分之1的x次方)求导!
y=(1+1/x)^x,
即y=e^ [x*ln(1+1/x)],
所以
y'= e^ [x*ln(1+1/x)] * [x*ln(1+1/x)] '

[x*ln(1+1/x)] '
= x' * ln(1+1/x) + x* [ln(1+1/x)] '
= ln(1+1/x) + x* [-(1/x^2) / (1+1/x)]
= ln(1+1/x) - 1/(x+1)

y'= e^ [x*ln(1+1/x)] * [x*ln(1+1/x)] '
= e^ [x*ln(1+1/x)] * [ln(1+1/x) - 1/(x+1)]
= (1+1/x)^x * [ln(1+1/x) - 1/(x+1)]