求证 极限 lim [(b1+b2+.bn)/(a1+a2+...an)] = L
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/14 10:34:04
求证 极限 lim [(b1+b2+.bn)/(a1+a2+...an)] = L
条件(I) 通项an>0 且a1+a2+...an = 正无穷
条件(II) lim (bn/an) = L
注意 bn或者an中的n均为下标 且n从1开始
提示 :Stolz定理 或者 考虑Toeplitz 数表?
回答者:benkyoshi - 大魔法师 九级 12-26 04:58
虽然您的解答十分精彩,但是不好意思,有比您更早时间的回答,另外,采用了我的提示.十分抱歉,我只能将分数送给第一楼的朋友,
条件(I) 通项an>0 且a1+a2+...an = 正无穷
条件(II) lim (bn/an) = L
注意 bn或者an中的n均为下标 且n从1开始
提示 :Stolz定理 或者 考虑Toeplitz 数表?
回答者:benkyoshi - 大魔法师 九级 12-26 04:58
虽然您的解答十分精彩,但是不好意思,有比您更早时间的回答,另外,采用了我的提示.十分抱歉,我只能将分数送给第一楼的朋友,
设
An = a1+a2+……an
Bn = b1+b2+……+bn
由于an>0
An单调上升,且
limAn = +∞;
lim(bn/an) = lim((Bn - Bn-1)/(An - An-1) = L
由Stolz定理:limAn/Bn = L
即所要求的结果
An = a1+a2+……an
Bn = b1+b2+……+bn
由于an>0
An单调上升,且
limAn = +∞;
lim(bn/an) = lim((Bn - Bn-1)/(An - An-1) = L
由Stolz定理:limAn/Bn = L
即所要求的结果
不等式证明,求证:a1/b1+a2/b2+...+an/bn>=(a1+a2+...+an)^2/a1b1+a2b2+.
矩阵|a1+b1 a1+b2.a1+bn;a2+b1 a2+b2.a2+bn;.an+b1 an+b2.an+bn|等于
已知{an}等差数列,{bn}等比数列,a1=b1,a2=b2,a2≠a1,且对所有的自然数n恒有an>0,求证:当n>
设an,bn都是等差数列,其中a1=3,b1=2,b2是a2与a3的等差数列,liman/bn=1/2,求lim(1/a
若a1/b1=a2/b2=a3/b3=.=an/bn 则a1/b1=a2/b2=...=(a1+a2+a3+...+
若a1\b1=a2\b2=……=an\bn(a1,a2,……an,b2,……bn都是正整数),求证:√a1b1+√a2b
已知a1,a2,…,an;b1,b2,…,bn(n是正整数),令L1=b1+b2+…+bn,L2=b2+b3+…+bn,
请证明不等式:(a1+a2+...+an)^2/(a1*b1+a2*b2+...+an*bn)
已知a1,a2,b1,b2不等于0,a1*a2+b1*b2=0,求证a1*b2-a2*b1不等于0
an=2^n bn=2n Tm=b1/a1+b2/a2+……+bn/an,求Tn
两个等差数列{an},{bn},a1+a2+...+an/b1+b2+...+bn=7n+2/n+2,则a5/b5=?
两个等差数列{an},{bn},a1+a2+a3+...+an/b1+b2+b3+...+bn=7n+2/n+3. 则a