如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 17:23:48
如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.
(1)若D在BC上(如图1)求证CD+CE=CA;
(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.
(1)若D在BC上(如图1)求证CD+CE=CA;
(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.
(1)证明:在AC上取点F,使CF=CD,连接DF.
∵∠ACB=60°,
∴△DCF为等边三角形.
∴∠3+∠4=∠4+∠5=60°.
∴∠3=∠5.
∵∠1+∠ADE=∠2+∠ACE,
∴∠1=∠2.
在△ADF和△EDC中,
∠1=∠2
∠3=∠5
DF=DC,
∴△ADF≌△EDC(AAS).
∴CE=AF.
∴CD+CE=CF+AF=CA.
(2) CD、CE、CA满足CE+CA=CD;
证明:
在CA延长线上取CF=CD,连接DF.
∵△ABC为等边三角形,
∴∠ACD=60°,
∵CF=CD,
∴△FCD为等边三角形.
∵∠1+∠2=60°,
∵∠ADE=∠2+∠3=60°,
∴∠1=∠3.
在△DFA和△DCE中
∠F=∠DCE
DF=CD
∠1=∠3,
∴△DFA≌△DCE(ASA).
∴AF=CE.
∴CE+CA=FA+CA=CF=CD.
注:证法(二)以CD为边向下作等边三角形,可证.
证法(三)过点D分别向CA、CE作垂线,也可证.
∵∠ACB=60°,
∴△DCF为等边三角形.
∴∠3+∠4=∠4+∠5=60°.
∴∠3=∠5.
∵∠1+∠ADE=∠2+∠ACE,
∴∠1=∠2.
在△ADF和△EDC中,
∠1=∠2
∠3=∠5
DF=DC,
∴△ADF≌△EDC(AAS).
∴CE=AF.
∴CD+CE=CF+AF=CA.
(2) CD、CE、CA满足CE+CA=CD;
证明:
在CA延长线上取CF=CD,连接DF.
∵△ABC为等边三角形,
∴∠ACD=60°,
∵CF=CD,
∴△FCD为等边三角形.
∵∠1+∠2=60°,
∵∠ADE=∠2+∠3=60°,
∴∠1=∠3.
在△DFA和△DCE中
∠F=∠DCE
DF=CD
∠1=∠3,
∴△DFA≌△DCE(ASA).
∴AF=CE.
∴CE+CA=FA+CA=CF=CD.
注:证法(二)以CD为边向下作等边三角形,可证.
证法(三)过点D分别向CA、CE作垂线,也可证.
已知△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE的一边DE交直线a于点E,∠ADE=60°,若D在B
如图,已知△ABC是等边三角形,d为bc上一点,以ad为边做∠ade=60°,de与△abc的外角平分线ce交于点e,连
已知;如图,在△ABC中,∠BAC=90°,D为BC上一点,且AB=BD,DE⊥BC,交AC于点E.求证:△ADE是等腰
如图,已知△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE交于E点,
如图 在△ABC中 ∠BAC=90度 D为BC上一点 且AB=BD DE⊥BC 交AC于点E 说明△ADE是等腰三角形
如图,在三角形ABC中,角ABC等于角ACB,D为BC边上一点,E是直线AC上一点,且角ADE=角AED.
如图所示点d是等边三角形abc的边bc上一点,连接ad作∠ade=60°,交△abc的外角平分线ce于e
在等边△ABC中,AB=8,点D在边BC上,△ADE为等边三角形,且点E与点D在直线AC的两侧,过点E作EF‖BC,EF
如图,△ABC为等边三角形,D为BC上任意一点,∠ADE=60°边DE与∠ACB的外角平分线相交于点E
如图,锐角三角形ABC中,以BC为直径的圆O分别交AB、AC于点D、E,已知∠A=60°,求△ADE的面积与△ABC的面
已知如图△ABC为等边三角形,D为BC延长线上一点,EC平分∠ACD,且∠ADE=60°,求证:△ADE为等边三角形.
如图,已知直线AB与DE,BC分别交于点D,B∠ADE=∠ABC,DF,BG分别平分∠ADE,∠ABC.请说明DF∥BG