△ABC为等腰直角三角形,∠bac=90°,e为ab上任意一动点,bc=2,ce为斜边做等腰rt△cde,连接ad,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 17:24:31
△ABC为等腰直角三角形,∠bac=90°,e为ab上任意一动点,bc=2,ce为斜边做等腰rt△cde,连接ad,
求证,四边形abcd的面积有最大值,且最大值为3/2
求证,四边形abcd的面积有最大值,且最大值为3/2
∵△ABC为等腰直角三角形,∠BAC=90°,
∴AB=AC=√2/2BC=√2
∴S△ABC=½AB·AC=1
作DM⊥AB,DN⊥AC,容易得△DME≌△DNC
∴DM=DN=√2/2AD
∴四边形ABCD的面积=S△ABC+S△ADC=1+½DN·AC=1+√2/2DN=1+AD/2
∴当AD最大时,面积最大,此时点E与A重合,AD=√2/2AC=1
∴四边形ABCD的最大面积=1+1/2=3/2
∴AB=AC=√2/2BC=√2
∴S△ABC=½AB·AC=1
作DM⊥AB,DN⊥AC,容易得△DME≌△DNC
∴DM=DN=√2/2AD
∴四边形ABCD的面积=S△ABC+S△ADC=1+½DN·AC=1+√2/2DN=1+AD/2
∴当AD最大时,面积最大,此时点E与A重合,AD=√2/2AC=1
∴四边形ABCD的最大面积=1+1/2=3/2
如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰直角△CDE,连接A
已知等腰直角三角形ABC中,角A=90度,如图,E为AB上任意一点,以CE为斜边作等腰直角三角形CDE,连结AD,求证A
如图,在△ABC中,∠BAC=90°,AB=AC.点E在AB上,以CE为斜边作等腰直角三角形DCE,并使点D与点A在CE
如图,在△ABC中,∠BAC=90°,AB=AC,点E在AB上,以CE为斜边作等腰直角三角形DCE,并使
等腰直角三角形ABC中角C等于90度,AC=BC,D为BC的中点,E为斜边AB上的一点,且AE=2EB,CE与AD交于点
已知:等腰RT三角形ABC中,角A=90度,如图8-1,E为AB上任意一点,以CE为斜边等腰R
△ABC是等腰直角三角形,AB=AC,点D在BC上,△ADE也是等腰直角三角形,AD=AE,连接CE 求证:CE⊥BC
如图 等腰直角三角形ABC 角BAC=90 0是斜边BC中点,连接OA,以点O为旋转中心,将△ABC顺时针旋转α
如图,在△ABC中,∠BAC=90度,AB=AC,点E在AB上,以CE为斜边作等腰直角三角形DCE,并使点D与点A在CD
△abc为等腰直角三角形,ab=ac,d为斜边bc的中点,e、f分别为ab、ac上的点,且de⊥df.
等腰直角三角形 在等腰Rt△ABC中,∠ACB=90,AC=BC,点E在斜边AB上,且AE=2EB,点D是CB的中点,求
已知等腰Rt△ACB中,∠ACB=90°,D为线段BC上一动点,AE=AD,AE⊥AD,连接BE与AC交于P点,其中BD