已知数列An前n项和Sn,a1=1,An>0,1\A(n+1)=根号下[4+(1\An^2)],求证,1+Sn>1\2根
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 02:22:24
已知数列An前n项和Sn,a1=1,An>0,1\A(n+1)=根号下[4+(1\An^2)],求证,1+Sn>1\2根号下[4n+1]
把1/a(n+1)=[4+(1/an^2)]^(1/2)两边平方,得,1/[a(n+1)]^2=4+(1/an^2)
推导可知1/[a(n+1)]^2=4n+1故an=[1/(4n-3)]^(1/2)
之后使用数学归纳法:
①当n=1时,有1+S1=2>5^(1/2)/2结论成立.
②假设当n=k时结论成立,当n=k+1时,有1+S(k+1)=1+S(k)+a(k+1)>(4k+1)^(1/2)/2+[1/(4k+1)]^(1/2)
现欲证明(4k+1)^(1/2)/2+[1/(4k+1)]^(1/2)>(4k+5)^(1/2)/2
由于两边都是正数,两边平方,得(4k+1)/4+1/(4k+1)+1>(4k+5)/4,由于1/(4k+1)>0.故不等式恒成立.所以1+S(k+1)=1+S(k)+a(k+1)>(4k+1)^(1/2)/2+[1/(4k+1)]^(1/2)>[4(k+1)+1]^(1/2)/2
故当n=k时成立,可推出n=k+1时成立.
③由①②可知,当n=k,k∈N*时,恒有1+Sn>(4n+1)^(1/2)/2成立.
推导可知1/[a(n+1)]^2=4n+1故an=[1/(4n-3)]^(1/2)
之后使用数学归纳法:
①当n=1时,有1+S1=2>5^(1/2)/2结论成立.
②假设当n=k时结论成立,当n=k+1时,有1+S(k+1)=1+S(k)+a(k+1)>(4k+1)^(1/2)/2+[1/(4k+1)]^(1/2)
现欲证明(4k+1)^(1/2)/2+[1/(4k+1)]^(1/2)>(4k+5)^(1/2)/2
由于两边都是正数,两边平方,得(4k+1)/4+1/(4k+1)+1>(4k+5)/4,由于1/(4k+1)>0.故不等式恒成立.所以1+S(k+1)=1+S(k)+a(k+1)>(4k+1)^(1/2)/2+[1/(4k+1)]^(1/2)>[4(k+1)+1]^(1/2)/2
故当n=k时成立,可推出n=k+1时成立.
③由①②可知,当n=k,k∈N*时,恒有1+Sn>(4n+1)^(1/2)/2成立.
已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an=(根号下Sn+根号下Sn-1)/2
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
高中数列{An}前n项和Sn且A1=0 ,S(n+1)=4An+2.求证{A(n+1)-2An}为等比数列.
已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
已知数列{an}中,n属于N*,an>0 其前n项和为Sn 满足2根号下Sn=an+1
已知数列an首相a1=3,通项an和前n项和SN之间满足2an=Sn*Sn-1(n大于等于2)
已知数列{an}满足a1=1,an-a(n+1)=ana(n+1),数列{an}的前n项和为Sn.(1)求证:{1/an
已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列
已知数列An的前n项和Sn满足An+2Sn*Sn-1=0,n大于等于2,A1=1/2,求An.
已知数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1 (Ⅰ)求证:数列{a
设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn=