如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,BC∥平面PAD,∠PBC=90°,∠PBA≠90°.求证:
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 23:24:28
如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,BC∥平面PAD,∠PBC=90°,∠PBA≠90°.求证:
(1)AD∥平面PBC;
(2)平面PBC⊥平面PAB.
(1)AD∥平面PBC;
(2)平面PBC⊥平面PAB.
证明:(1)因为BC∥平面PAD,
而BC⊂平面ABCD,平面ABCD∩平面PAD=AD,
所以BC∥AD.
因为AD⊄平面PBC,BC⊂平面PBC,
所以AD∥平面PBC.
(2)自P作PH⊥AB于H,因为平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,
所以PH⊥平面ABCD.
因为BC⊂平面ABCD,所以BC⊥PH.
因为∠PBC=90°,所以BC⊥PB,
而∠PBA≠90°,于是点H与B不重合,即PB∩PH=P.
因为PB,PH⊂平面PAB,所以BC⊥平面PAB.
因为BC⊂平面PBC,故平面PBC⊥平面PAB.
而BC⊂平面ABCD,平面ABCD∩平面PAD=AD,
所以BC∥AD.
因为AD⊄平面PBC,BC⊂平面PBC,
所以AD∥平面PBC.
(2)自P作PH⊥AB于H,因为平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,
所以PH⊥平面ABCD.
因为BC⊂平面ABCD,所以BC⊥PH.
因为∠PBC=90°,所以BC⊥PB,
而∠PBA≠90°,于是点H与B不重合,即PB∩PH=P.
因为PB,PH⊂平面PAB,所以BC⊥平面PAB.
因为BC⊂平面PBC,故平面PBC⊥平面PAB.
如图,四棱锥P-ABCD中,平面PAB⊥平面PBC,∠PBC=∠BAD=90°,求证:BC‖平面PAD
(2013•南通二模)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,BC∥平面PAD,∠PBC=90°,∠PB
在四棱锥P-ABCD中,四边形ABCD是梯形,AD//BC,∠ABC=90,平面PAB⊥平面ABCD,平面PAD⊥平面A
如图,在四棱锥P-ABCD中,四边形ABCD为矩形,三角形PAD为等腰直角三角形,角APD=90°,平面PAD垂直平面A
如图,在四棱锥p -ABCD中底面 ABCD是正方形,侧面PAD 是正三角形,平面PAD垂直底面ABCD,求平面PAB垂
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠ABC=∠BCD=90°,PA=PD=DC=CB=12AB,E
如图在四棱锥P-ABCD中,底面ABCD为直角梯形,AD平行BC∠ADC=90度,平面PAD垂直底面
如图,已知四棱锥P-ABCD中,平面PAD⊥平面ABCD,平面PCD⊥平面ABCD
如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,∠ABC=90°,PD⊥平面ABCD
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.当平面PBC⊥面PDC
如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB垂直平面ABCD,PA垂直PB,BP=BC,E为PB的中点。
四棱锥P-ABCD中,ABCD是正方形,侧面PAD⊥底面ABCD,PA=PD,证明平面PAB⊥平面PAD