1.consider the integral ∫(∞,1) 1/x^p dx
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:48:36
1.consider the integral ∫(∞,1) 1/x^p dx
a.determine if this integral converges or diverges for p= 0.5
b.determine if this integral converges or diverges for p= 0.9
c.determine if this integral converges or diverges for p= 1
d.determine if this integral converges or diverges for p= 1.5
e.determine if this integral converges or diverges for p= 2
f.let p>1.will∫(∞,1) 1/x^p diverge or converge?show all your work.
2.determine whether ∫(∞,-∞) xe^(-x^2) dx converges or diverges.show all your work
a.determine if this integral converges or diverges for p= 0.5
b.determine if this integral converges or diverges for p= 0.9
c.determine if this integral converges or diverges for p= 1
d.determine if this integral converges or diverges for p= 1.5
e.determine if this integral converges or diverges for p= 2
f.let p>1.will∫(∞,1) 1/x^p diverge or converge?show all your work.
2.determine whether ∫(∞,-∞) xe^(-x^2) dx converges or diverges.show all your work
p-级数
U=∑1/n^p ∑上面为无穷大,下面为n=1
对于实数值的p,当p > 1 时收敛,当p ≤ 1 时发散.这可以由积分比较审敛法得出.
有了上面的理论可知:
a,b,c中p1是收敛的
对于f.
∫1/x^p =1/(1-p)*x^(1-p)
代入x∈(∞,1)
p>1.则(1-p)
U=∑1/n^p ∑上面为无穷大,下面为n=1
对于实数值的p,当p > 1 时收敛,当p ≤ 1 时发散.这可以由积分比较审敛法得出.
有了上面的理论可知:
a,b,c中p1是收敛的
对于f.
∫1/x^p =1/(1-p)*x^(1-p)
代入x∈(∞,1)
p>1.则(1-p)