已知:如图,△ABC内接于圆O,AB为直径,角CBA的平分线交AC于点F,交○O于点F,交○O于点D,DE⊥AB于点E.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 06:00:51
已知:如图,△ABC内接于圆O,AB为直径,角CBA的平分线交AC于点F,交○O于点F,交○O于点D,DE⊥AB于点E.
【2】求证P是线段AF中点 【3】若圆的半径为5,AF=15/2 求tan∠ABF的值
【2】求证P是线段AF中点 【3】若圆的半径为5,AF=15/2 求tan∠ABF的值
(2)∵AB为直径,
∴∠ADB=90°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,
∴∠PDF=∠PFD,
∴PD=PF,
∴PA=PF,
即:P是AF的中点;
∵∠DFA=∠DBA,∠ADB=∠FDA=90°
∴∠FDA和∠ADB相似
∴AD/DB=AF/AB
∴在直角三角形ABD中,tan∠ABD=AD/DB=AF/AB=(15/2)/10=3/4
即tan∠ABF=3/4
∴∠ADB=90°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,
∴∠PDF=∠PFD,
∴PD=PF,
∴PA=PF,
即:P是AF的中点;
∵∠DFA=∠DBA,∠ADB=∠FDA=90°
∴∠FDA和∠ADB相似
∴AD/DB=AF/AB
∴在直角三角形ABD中,tan∠ABD=AD/DB=AF/AB=(15/2)/10=3/4
即tan∠ABF=3/4
已知:如图,△ABC内接于圆O,AB为直径,∠CBA的角平分线交AC于点F,交圆O于点D,DE⊥AB于E,且交AC于P,
已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点
如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点P
已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D
已知,如图.三角形ABc内接于圆o,AB为直径.角CBA的平分线交Ac于点F.,交圆o于点D,DE⊥AB(1):求证,P
如图,三角形abc的三个顶点都在圆o上,ab为直径,角cba的平分线交ac于点f,交圆o于点d,de垂直ab于点e,且交
如图,AB是圆O的直径,AC是弦,∠BAC的平分线AD交○O于点D,DE⊥AC交AC延长线于点E,OE交AD于点F.
如图,AB为圆O的直径,AC为弦,角BAC的平分线AD交圆O于D点,DE垂直于AC,交AC的延长线于点E,OE交AD于F
如图,AB是圆O的直径,AC是弦,∠BAC的角平分线AD交圆O于点D,DE⊥AC交AC的延长线于点E,OE交AD于点F.
已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
如图,已知AB,AC分别是圆O的直径和弦,D为劣弧AC上一点,DE垂直于AB于点H,交圆O于点E,交AC于点F,P为ED
如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点F,交BA的延长线于点E