f(x)=ax^3+bx^2+cx+d与x轴有三个交点(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:27:09
f(x)=ax^3+bx^2+cx+d与x轴有三个交点(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2时取极值,则x1*x2
首先,求导,f'(x)=3ax^2+2bx+c.
因为x=1,x=2时取极值,故f'(1)=0,f'(2)=0
所以,f'(1)=3a+2b+c=0(1)
f'(2)=12a+4b+c=0(2)两式想减,得9a+2b=0,故b=-9a/2 (3)
代人(1)得c=-3a-2b=6a
又因为,f(x)=ax^3+bx^2+cx+d与x轴有三个交点(0,0),(x1,0),(x2,0),即过(0,0),代入,得d=0
故f(x)=ax^3+bx^2+cx =ax^3-(9a/2) x^2+6ax =x(ax^2-(9a/2) x+6a )
而 x1,x2一定是ax^2-(9a/2) x+6a =0的两根,所以两根之积x1*x2 =(6a)/a=6
打出来这些,真是好费劲啊……希望你能看懂,我写的挺详细了
因为x=1,x=2时取极值,故f'(1)=0,f'(2)=0
所以,f'(1)=3a+2b+c=0(1)
f'(2)=12a+4b+c=0(2)两式想减,得9a+2b=0,故b=-9a/2 (3)
代人(1)得c=-3a-2b=6a
又因为,f(x)=ax^3+bx^2+cx+d与x轴有三个交点(0,0),(x1,0),(x2,0),即过(0,0),代入,得d=0
故f(x)=ax^3+bx^2+cx =ax^3-(9a/2) x^2+6ax =x(ax^2-(9a/2) x+6a )
而 x1,x2一定是ax^2-(9a/2) x+6a =0的两根,所以两根之积x1*x2 =(6a)/a=6
打出来这些,真是好费劲啊……希望你能看懂,我写的挺详细了
已知f(x)=ax^3+bX^2+cx+d与x轴有3个交点(0,0),(x1,0),(x2,0),且f(x)在x=1,x
已知函数f(x)=ax^3+bx^2+cx+d,有三个零点分别是0,1,2 f(x)在(-∞,x1]单增 [x1,x2]
证明三次多项式f(x)=ax^3+bx^2+cx+d(a不等于0)有且仅有一个拐点(x0,f(x0)),且若f(x1)=
已知函数f(x)=ax3+bx2+cx+d的图像与x轴有三个不同交点(0,0),(x1,0),(x2,0),在x=1,x
一道超级难题已知f(x)=ax^2+bx+c(a>0)且x1不等于x2,则f[(2x1+x2)/3]与[2f(x1)+f
若二次函数f(x)=ax^2+bx+c的图像与x轴有两个不同的交点A(x1,0)B(x2,0).且x1^2+x2^2=2
已知函数f(x)=1/3ax^3+1/2bx^2+cx 若方程f(x)=0有三个根分别为x1.x2.
已知函数f(x)=ax^3+bx^2+cx+d ,-2是f(x)的一个零点,又f(x)在x=0处有极值
已知函数f(x)=(1/3)ax^3*bx^2+cx+d在x=x1处取得极大值,在x=x2处取得极小值,证明a >0
已知函数f(x)=1/3ax^3+bx^2+cx+d,在x=x1处取得极大值,在x=x2处取得极小值,且x1小于x2,证
设函数f=ax^3+bx^2+cx+d图像与y轴交点为P,且曲线于P的切线方程为12x-y-4=0,若函数在x=2时取得
函数f(x)=1/3ax^3-bx^2+(2-b)+1在x=x1最大在x=x2最小且0