在计算“1×2+2×3+…+n(n+1)”时,先改写第k项:k(k+1)=13[k(k+1)(k+2)-(k-1)k(k
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 06:25:30
在计算“1×2+2×3+…+n(n+1)”时,先改写第k项:k(k+1)=
1 |
3 |
(1)∵n(n+1)(n+2)=
1
4[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3=
1
4(1×2×3×4-0×1×2×3)
2×3×4=
1
4(2×3×4×5-1×2×3×4)
…
n(n+1)(n+2)=
1
4[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=
1
4n(n+1)(n+2)(n+3)
(2)利用数学归纳法证:1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4n(n+1)(n+2)(n+3)
①当n=1时,左边=1×2×3,右边=
1
4×1×2×3×4=1×2×3,左边=右边,等式成立.
②设当n=k(k∈N*)时,等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=
k(k+1)(k+2)(k+3)
4.
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
k(k+1)(k+2)(k+3)
4+(k+1)(k+2)(k+3)
=(k+1)(k+2)(k+3)(
k
4+1)
=
(k+1)(k+2)(k+3)(K+4)
4
=
(k+1)(k+1+1)(k+1+2)(k+1+3)
4.
∴n=k+1时,等式成立.
由①、②可知,原等式对于任意n∈N*成立.
1
4[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3=
1
4(1×2×3×4-0×1×2×3)
2×3×4=
1
4(2×3×4×5-1×2×3×4)
…
n(n+1)(n+2)=
1
4[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=
1
4n(n+1)(n+2)(n+3)
(2)利用数学归纳法证:1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4n(n+1)(n+2)(n+3)
①当n=1时,左边=1×2×3,右边=
1
4×1×2×3×4=1×2×3,左边=右边,等式成立.
②设当n=k(k∈N*)时,等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=
k(k+1)(k+2)(k+3)
4.
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
k(k+1)(k+2)(k+3)
4+(k+1)(k+2)(k+3)
=(k+1)(k+2)(k+3)(
k
4+1)
=
(k+1)(k+2)(k+3)(K+4)
4
=
(k+1)(k+1+1)(k+1+2)(k+1+3)
4.
∴n=k+1时,等式成立.
由①、②可知,原等式对于任意n∈N*成立.
已知函数sum(k,n)=1^k+2^k+3^k…+n^k.计算当k=2,n=5时的结果.
请问1^k+2^k+3^k+.+n^k=?
sum(k,n)=1^k+2^k+...+n^k 的vb编码
计算2/(k+1)(k+3) +2/(k+3)(k+5)+…+2/(k+2003)(k+2005)
1^k+2^k+3^k+.+n^k 有无表达式
求证:lim1^k+2^k+3^k+4^k+.n^k/n^(k+1)=1/k+1
计算s=1k+2k+3k+……+N k
化简:k-1/k²-4k+4÷1-k/k²-4的结果是( ) A、2-k/k+2 B、k+2/k-2
用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1
K-1+K+2+K/3+K*3=2001
3×k×k-2k-1=-1.k等于
c语言 求1^k+2^k+3^k+……+n^k,假定n=6,k=4