作业帮 > 数学 > 作业

如图,在△ABC中,AD⊥BC,CE是三角形ACB的角平分线,AD,CE交与F点,若∠BAC=75°,∠B=35°,求∠

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 08:08:12
如图,在△ABC中,AD⊥BC,CE是三角形ACB的角平分线,AD,CE交与F点,若∠BAC=75°,∠B=35°,求∠ACB,∠AE
如图,在△ABC中,AD⊥BC,CE是三角形ACB的角平分线,AD,CE交与F点,若∠BAC=75°,∠B=35°,求∠
因为:∠ACB=180°-∠BAC–∠B
∠BAC=75°,∠B=35°.
所以:∠ACB=70°
又因为:CE是三角形ACB的角平分线
所以:∠ACE=1/2∠ACB=35°
∠AEC=180°-∠BAC-∠ACE
=180°-75°-35°
=60°