用洛必达法则求lim(x->0)ln(1+x^2)\(secx-cosx),
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:09:04
用洛必达法则求lim(x->0)ln(1+x^2)\(secx-cosx),
这题用等价无穷小代换要简单些
lim(x->0)ln(1+x^2)/(secx-cosx)
=lim(x->0)ln(1+x^2)/(1/cosx-cosx)
=lim(x->0)ln(1+x^2)cosx/(1-(cosx)^2)
=lim(x->0)ln(1+x^2)cosx/((sinx)^2)
等价无穷小代换
=lim(x->0) x^2cosx/x^2
=1
如果非要用洛必达法则,那从倒数第三步
=lim(x->0)ln(1+x^2)cosx/((sinx)^2)
=lim(x->0)ln(1+x^2)/((sinx)^2)*lim(x->0)cosx
=lim(x->0) [2x/(1+x^2)]/(2sinxcosx)*1
=lim(x->0) 2x/2sinx*lim(x->0) 1/[(1+x^2)cosx]
=1
lim(x->0)ln(1+x^2)/(secx-cosx)
=lim(x->0)ln(1+x^2)/(1/cosx-cosx)
=lim(x->0)ln(1+x^2)cosx/(1-(cosx)^2)
=lim(x->0)ln(1+x^2)cosx/((sinx)^2)
等价无穷小代换
=lim(x->0) x^2cosx/x^2
=1
如果非要用洛必达法则,那从倒数第三步
=lim(x->0)ln(1+x^2)cosx/((sinx)^2)
=lim(x->0)ln(1+x^2)/((sinx)^2)*lim(x->0)cosx
=lim(x->0) [2x/(1+x^2)]/(2sinxcosx)*1
=lim(x->0) 2x/2sinx*lim(x->0) 1/[(1+x^2)cosx]
=1
lim[ln(1+x^2)]/(secx-cosx) x->0
求 lim ln(1+x+2x^2)+ln(1-x+x^2)/secx-cosx
1、lim ln(1+x+2x^2)+ln(1-x+x^2)/secx-cosx
limx趋向0[ln(1+x^2)/secx-cosx]
用洛必达法则求极限:lim ln(1+x)/x^2= 其中x-》0
用洛必达法则求lim(x→0)x²分之x-ln(1+x)
lim(x->0)(e^x+e^-x-2)/ln(1+x^2) 求极限,我用洛必达法则可还是解
洛必达法则求极限 lim(x-0) ln(x+根号(1+x^2))
求极限lim x→π(sin3x)/(x-π)和求极限lim x→π/2(1+cosx)secx
lim(x→0)(cosx)^(1/ln(1+x^2))
lim(x→0)(ln(1+x^2)/(sec-cosx))
ln(1+x^2)/secx-cosx的极限怎么求?