在四棱锥P-ABCD中,底面ABCD是矩形,M,N分别为PA,BC的中点,PD垂直平面ABCD,且PD=AD=根号2,C
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 10:34:49
在四棱锥P-ABCD中,底面ABCD是矩形,M,N分别为PA,BC的中点,PD垂直平面ABCD,且PD=AD=根号2,CD=1.(1)证明MN平行面PCD;(2)MC垂直BD;(3)求二面角A-PB-D的余弦值
(1)解析:∵在四棱锥P-ABCD中,底面ABCD是矩形,M,N分别为PA,BC的中点,PD垂直平面ABCD
过M作ME⊥AD交AD于E,∴E为AD的中点
∴EN//AB//CD,EN⊥AD,面MEN⊥面ABCD,
又面PDC⊥面ABCD,∴面PDC//面MEN==>MN//面PDC
(2)∵PD=AD=√2,CD=1
连接EC,BD交于F
在Rt⊿EDC中,∠EDC=π/2,∴tan∠DEC=DC/DE=√2
在Rt⊿DAB中,∠DAB=π/2,∴tan∠DBA=AD/AB=√2
∴∠DBA=∠DEC
又∠DBA+∠ADB=π/2,∴∠DEC+∠ADB=π/2==>∠DFE=π/2,即EC⊥BD
又EC为MC在面ABCD中的射影,∴MC⊥BD
(3)过D作DG⊥PB交PB于G,过A作AH⊥PB交PB于H
过G作GS//AH交PA于S
∴∠SGD为二面角A-PB-D的平面角
由Rt⊿ABD中求出BD=√3
由Rt⊿PBD中求出PB=√5,PG=2√5/5,DG=6/5
由Rt⊿PAB中求出BH=√5/5,AH=2√5/5
由⊿PAH∽⊿PSG
得出SG/AH=PG/PH
PH=4√5/5,∴SG/AH=PG/PH=1/2==>SG=AH/2=√5/5
∴M与S重合
∵⊿PAD为Rt⊿,PA=2,∴DS=DM=1
由余弦定理cos∠SGD=(DG^2+GS^2-DS^2)/(2DG*GS)
=(36/25+1/5-1)/(2*6/5*√5/5)=4√5/15
∴二面角A-PB-D的余弦值为4√5/15
过M作ME⊥AD交AD于E,∴E为AD的中点
∴EN//AB//CD,EN⊥AD,面MEN⊥面ABCD,
又面PDC⊥面ABCD,∴面PDC//面MEN==>MN//面PDC
(2)∵PD=AD=√2,CD=1
连接EC,BD交于F
在Rt⊿EDC中,∠EDC=π/2,∴tan∠DEC=DC/DE=√2
在Rt⊿DAB中,∠DAB=π/2,∴tan∠DBA=AD/AB=√2
∴∠DBA=∠DEC
又∠DBA+∠ADB=π/2,∴∠DEC+∠ADB=π/2==>∠DFE=π/2,即EC⊥BD
又EC为MC在面ABCD中的射影,∴MC⊥BD
(3)过D作DG⊥PB交PB于G,过A作AH⊥PB交PB于H
过G作GS//AH交PA于S
∴∠SGD为二面角A-PB-D的平面角
由Rt⊿ABD中求出BD=√3
由Rt⊿PBD中求出PB=√5,PG=2√5/5,DG=6/5
由Rt⊿PAB中求出BH=√5/5,AH=2√5/5
由⊿PAH∽⊿PSG
得出SG/AH=PG/PH
PH=4√5/5,∴SG/AH=PG/PH=1/2==>SG=AH/2=√5/5
∴M与S重合
∵⊿PAD为Rt⊿,PA=2,∴DS=DM=1
由余弦定理cos∠SGD=(DG^2+GS^2-DS^2)/(2DG*GS)
=(36/25+1/5-1)/(2*6/5*√5/5)=4√5/15
∴二面角A-PB-D的余弦值为4√5/15
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M,N分别为PA,BC的中点,PD垂直于平面ABCD,且PD=AD=根
四棱锥p-ABCD中 底面ABCD为矩形,PD垂直底面,AD=PD,E F分别为CD PB 中点 求证 EF垂直平面PA
在四棱锥p-abcd中,地面abcd是边长为2的正方形,pd垂直平面abcd,且pd=ad,e为pd的中点
在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD为正方形,M为PC的中点,PD=AB,求证PA平行平面MBD
如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧面PAD⊥底面ABCD,PA=PD,M,N分别为AB,PC中点,求证
如图,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=AD,又M,N,E分别是AB,PC PD的
在底面为平行四边形的四棱锥P-ABCD中,AB垂直AC.PA垂直平面ABCD,且PA=AB,点E是PD的中点
在底面为平行四边形的四棱锥P-ABCD中,AB垂直AC,PA垂直平面ABCD,且PA=AB,点E是PD中点
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD中点.
在四棱锥P -ABCD中,底面ABCD是菱形,角ABC=60度,PA垂直平面ABCD,点M,N分别为BC,PA的中点
在四棱锥P-ABCD中,底面ABCD是矩形,PA垂直平面ABCD,E,F分别是AB,PD的中点.求证:AF平行平面PEC
如图,四棱锥P-ABCD中,底面ABCD为正方形,PA=PD,PA垂直PD,PA垂直平面PDC, E为棱PD的中点