作业帮 > 数学 > 作业

图形题求解;△ABC中,点E在AB上,点F在AC上,BF与CE相交于点P,如果S四边形AEPF=S三角形CFP=4,则S

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 20:17:15
图形题求解;△ABC中,点E在AB上,点F在AC上,BF与CE相交于点P,如果S四边形AEPF=S三角形CFP=4,则S三角形B
;△ABC中,点E在AB上,点F在AC上,BF与CE相交于点P,如果S四边形AEPF=S三角形CFP=4,则S三角形BPC=?

图形题求解;△ABC中,点E在AB上,点F在AC上,BF与CE相交于点P,如果S四边形AEPF=S三角形CFP=4,则S
连接EF,AP,
根据题干不难得出△CEF与△BEF面积相等且又同底,所以它们的底EF上的高也相等,由此可以得出:EF∥BC,则:CF:AF=BE:AE;
而CF:AF=S△CFP:S△AFP;BE:AE=S△BEP:S△AEP;
可得:S△CFP:S△AFP=S△BEP:S△AEP;
又因为S△CFP=S△BEP=4;所以可得AP平分了四边形AEPF,即:S△AFP=S△AEP=2;
所以可得:AF:FC=1:2,所以S△BAF:S△BFC=1:2,
所以△BPC的面积为:4×2×2-4=12,
故答案为:12.
再问: 我发了图,你再解一下,谢谢
再答: 答案就是这个