设F1、F2分别是双曲线x²-(y²/9)=1的左右焦点,若点P在双曲线上,且向量PF1·向量PF2
设F1、F2分别是双曲线x²-y²/9=1的左、右焦点,若点P在双曲线上,且向量PF1*向量PF2=
设F1,F2分别是椭圆x^/9+y^/4的左右焦点.若点p在椭圆上,且向量PF1和PF2的模=2根号5.求PF1.PF2
设F1,F2为双曲线x^2/4 - y^2=1的两个焦点,点P在双曲线上,且满足向量PF1*向量PF2=0 则三角形F1
设F1、F2分别是椭圆x^2/16+y^2/7=1的左右焦点,若点P在椭圆上,且向量PF1点乘向量PF2=0,则向量PF
双曲线的左右焦点f1f2,x^2-y^2/9=1,点P在双曲线上,向量pf1*pf2=0,求向量PF1+PF2的绝对值
设双曲线x^2/a^2-y^2=1(a>0)的焦点为F1,F2,点P在双曲线上,且向量PF1*向量PF2=0求△F1PF
双曲线x²/9-y²/16=1的两个焦点为F1、F2,点p在双曲线上,若PF1⊥PF2,则点P到x轴
已知双曲线16x²-9y=144中,F1,F2是其两焦点,点P在双曲线上,并且|PF1|*|PF2|=32
设f1,f2是双曲线x²减4分之y²=1的左右两焦点若双曲线右支上存在一点p使向量pf1×向量pf2
设F1,F2分别是X^2-Y^2/3=1的左右焦点,P是双曲线上一点,且满足PF1⊥PF2,则|PF1|.|PF2|(此
若F1,F2是双曲线x^2/9-y^2/16=1的两个焦点,点P在双曲线上,且绝对值(PF1乘以PF2)=32,求角F1
第一题 设F1 F2 为双曲线X²/4-y²=1 的两个焦点,点P在双曲线上,且满足角F1PF2=9