已知A=a²-2b+π/2,B=b²-2c+π/2,C=c²-2a+π/2,其中a b c
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 20:02:05
已知A=a²-2b+π/2,B=b²-2c+π/2,C=c²-2a+π/2,其中a b c为实数,
求证:A、B、C中至少有一个为正数
反证法.
假设这三个数全部是小于等于0的,则:
A+B+C
=[a²-2b+π/3]+[b²-2c+π/2]+[c²-2a+π/6]
=[a²-2a+1]+[b²-2b+1]+[c²-2c+1]+π-3
=(a-1)²+(b-1)²+(c-1)²+(π-3)
因为:(a-1)²≥0、(b-1)²≥0、(c-1)²≥0、π-3>0,则:
A+B+C>0
这与A+B+C≤0矛盾,从而假设错误,则:
A、B、C中至少有一个是正数.
为什么题目是2/π 而答案里是π/3 π/6
求证:A、B、C中至少有一个为正数
反证法.
假设这三个数全部是小于等于0的,则:
A+B+C
=[a²-2b+π/3]+[b²-2c+π/2]+[c²-2a+π/6]
=[a²-2a+1]+[b²-2b+1]+[c²-2c+1]+π-3
=(a-1)²+(b-1)²+(c-1)²+(π-3)
因为:(a-1)²≥0、(b-1)²≥0、(c-1)²≥0、π-3>0,则:
A+B+C>0
这与A+B+C≤0矛盾,从而假设错误,则:
A、B、C中至少有一个是正数.
为什么题目是2/π 而答案里是π/3 π/6
肯定是打错了呗.
不过,都是π/2,也是这么证.
此时,A+B+C=(a-1)²+(b-1)²+(c-1)²+(3π/2-3)>0,与A+B+C
不过,都是π/2,也是这么证.
此时,A+B+C=(a-1)²+(b-1)²+(c-1)²+(3π/2-3)>0,与A+B+C
行列式证明|b+c c+a a+b| | a b c||a+b b+c c+a| = 2 |c a b||c+a a+b
已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)
已知a、b、c满足a²+2b=7,b-2c=1,c²-6c=17,求a+b+c的值
已知实数a、b、c满足1/2|a-b|+根号2b+c+c²-c+1/4=0,求a(b+c)的值
已知a,b,c满足1\2|a+b|+√(2b+c)+c²+1\4-c=0,求a(b+c)的值
已知向量a,b,c满足|a|=2 a/|a|+b/|b|=(a+b)/|a+b|,(a-c)*(b-c)=0,则|c|的
已知a,b,c,满足绝对值a-2+√a-2b+c+c²-c+1/4=0求±√a+b+c
已知a,b,c是△ABC的三边,且(a-b+c)(b²+c²)-2bc(a-b+c)=0,试判断△A
(a+b-c)²-2(a+b)(a-c)
已知a,b,c是实数,求证a*a+b*b+c*c>=ab+3b+2c
已知a/(b+2c)=b/(c+2a)=c/(a+2b),且a+b+c≠0,求(3b+c)/b的值?
为什么[(a+b)^2-c^2)][(a-b)^2-c^2)]=(a+b+c)(a+b-c)(a-b+c)(a-b-c)