作业帮 > 数学 > 作业

解方程组(xy+x+y+1)/(x+y+2)=2

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 13:59:49
解方程组(xy+x+y+1)/(x+y+2)=2
(xz+x+z+1)/(x+z+2)=3
(y+1)(z+1)/y+z+2=4
我希望能是具体步骤``谢谢`
解方程组(xy+x+y+1)/(x+y+2)=2
(xy+x+y+1)/(x+y+2)=2 即(x+y+2)/(xy+x+y+1)=[(x+1)+(y+1)]/(x+1)(y+1)
=1/(x+1)+1/(y+1)=1/2
同理:1/(x+1)+1/(z+1)=1/3 1/(y+1)+1/(z+1)=1/4
所以:三式一加:2[1/(x+1)+1/(y+1))+1/(z+1)]=1/2+1/3+1/4=13/12
1/(x+1)+1/(y+1)+1/(z+1)=13/24
所以1/(z+1)=13/24-1/2=1/24,z=23
1/(y+1)=13/24-1/3=5/24,y=24/5-1=19/5
1/(x+1)=13/24-1/4=7/24,x=24/7-1=17/7